STAT 3202: Practice 03

Autumn 2018, OSU

Exercise 1

Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Poisson}(\lambda)$. That is

$$f(x \mid \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots \quad \lambda > 0$$

(a) Obtain a method of moments estimator for λ , $\tilde{\lambda}$. Calculate an estimate using this estimator when

$$x_1 = 1, x_2 = 2, x_3 = 4, x_4 = 2.$$

(b) Find the maximum likelihood estimator for λ , $\hat{\lambda}$. Calculate an estimate using this estimator when

$$x_1 = 1, x_2 = 2, x_3 = 4, x_4 = 2.$$

(c) Find the maximum likelihood estimator of P[X = 4], call it $\hat{P}[X = 4]$. Calculate an estimate using this estimator when

$$x_1 = 1, x_2 = 2, x_3 = 4, x_4 = 2.$$

Exercise 2

Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} N(\theta, \sigma^2).$

Find a method of moments estimator for the *parameter vector* (θ, σ^2) .

Exercise 3

Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} N(1, \sigma^2)$. Find a method of moments **estimator** of σ^2 , call it $\tilde{\sigma}^2$.

Exercise 4

Let X_1, X_2, \ldots, X_n iid from a population with pdf

$$f(x \mid \theta) = \frac{1}{\theta} x^{(1-\theta)/\theta}, \quad 0 < x < 1, \ 0 < \theta < \infty$$

(a) Find the maximum likelihood estimator of θ , call it $\hat{\theta}$. Calculate an estimate using this estimator when

$$x_1 = 0.10, x_2 = 0.22, x_3 = 0.54, x_4 = 0.36.$$

(b) Obtain a method of moments estimator for θ , $\tilde{\theta}$. Calculate an estimate using this estimator when

$$x_1 = 0.10, x_2 = 0.22, x_3 = 0.54, x_4 = 0.36.$$

Exercise 5

Let X_1, X_2, \ldots, X_n iid from a population with pdf

$$f(x \mid \theta) = \frac{\theta}{x^2}, \quad 0 < \theta \le x$$

Obtain the maximum likelihood **estimator** for θ , $\hat{\theta}$.

Exercise 6

Let $X_1, X_2, \ldots X_n$ be a random sample of size n from a distribution with probability density function

$$f(x,\alpha) = \alpha^{-2} x e^{-x/\alpha}, \quad x > 0, \ \alpha > 0$$

(a) Obtain the maximum likelihood estimator of α , $\hat{\alpha}$. Calculate the estimate when

$$x_1 = 0.25, x_2 = 0.75, x_3 = 1.50, x_4 = 2.5, x_5 = 2.0.5$$

(b) Obtain the method of moments estimator of α , $\tilde{\alpha}$. Calculate the estimate when

$$x_1 = 0.25, x_2 = 0.75, x_3 = 1.50, x_4 = 2.5, x_5 = 2.0.$$

Hint: Recall the probability density function of an exponential random variable.

$$f(x \mid \theta) = \frac{1}{\theta} e^{-x/\theta}, \quad x > 0, \ \theta > 0$$

Note that, the moments of this distribution are given by

$$E[X^k] = \int_0^\infty \frac{x^k}{\theta} e^{-x/\theta} = k! \cdot \theta^k.$$

This hint will also be useful in the next exercise.

Exercise 7

Let $X_1, X_2, \ldots X_n$ be a random sample of size n from a distribution with probability density function

$$f(x \mid \beta) = \frac{1}{2\beta^3} x^2 e^{-x/\beta}, \quad x > 0, \ \beta > 0$$

(a) Obtain the maximum likelihood estimator of β , $\hat{\beta}$. Calculate the estimate when

 $x_1 = 2.00, x_2 = 4.00, x_3 = 7.50, x_4 = 3.00.$

(b) Obtain the method of moments estimator of β , $\tilde{\beta}$. Calculate the estimate when

$$x_1 = 2.00, x_2 = 4.00, x_3 = 7.50, x_4 = 3.00.$$