Estimation III: Method of Moments and Maximum Likelihood

Stat 3202 @ OSU, Autumn 2018 Dalpiaz

A Standard Setup

Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$. That is

$$f(x \mid \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots \quad \lambda > 0$$

How should we estimate λ ?

Population and Sample Moments

The k^{th} population moment of a RV (about the origin) is

$$\mu_{k}^{'}=\mathsf{E}\left[Y^{k}\right]$$

The k^{th} sample moment is

$$m'_{k} = \overline{Y^{k}} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{k}$$

The Method of Moments (MoM)

The **Method of Moments** (MoM) consists of equating sample moments and population moments. If a population has t parameters, the MOM consists of solving the system of equations

$$m_{k}^{'} = \mu_{k}^{'}, \ k = 1, 2, \dots, t$$

for the t parameters.

4

Example: Poisson

Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$. That is

$$f(x \mid \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots \quad \lambda > 0$$

Find a method of moments estimator of λ , call it $\tilde{\lambda}$.

Example: Normal, Two Unknowns

Let
$$X_1, X_2, \ldots, X_n$$
 be iid $N(\theta, \sigma^2)$.

Use the method of moments to estimate the *parameter vector* (θ, σ^2) .

Example: Normal, Mean Known

Let
$$X_1, X_2, \ldots, X_n$$
 be iid $N(1, \sigma^2)$.

Find a method of moments estimator of $\sigma^2,$ call it $\tilde{\sigma}^2.$

Calculus???

A Game Show / An Idea

Is a Coin Fair?

Let $Y \sim \text{binom}(n = 100, p)$.

Suppose we observe a single observation x = 60.

Log Rules

$$x^m x^n = x^{m+n}$$

•
$$(x^m)^n = x^{mn}$$

$$\log(ab) = \log(a) + \log(b)$$

$$\log(a/b) = \log(a) - \log(b)$$

$$\bullet \log \left(\prod_{i=1}^n x_i\right) = \sum_{i=1}^n \log(x_i)$$

Example: Poisson

Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$. That is

$$f(x \mid \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots \quad \lambda > 0$$

Find the maximum likelihood estimator of λ , call it $\hat{\lambda}$.

Example: Poisson

Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$. That is

$$f(x \mid \lambda) = \frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots \quad \lambda > 0$$

Calculate the maximum likelihood estimate of λ , when

$$x_1=1, \ x_2=2, \ x_3=4, \ x_4=2.$$

Maximum Likelihood Estimation (MLE)

Given a random sample X_1, X_2, \ldots, X_n from a population with parameter θ and density or mass $f(x \mid \theta)$, we have:

The Likelihood, $L(\theta)$,

$$L(\theta) = f(x_1, x_2, \ldots, x_n) = \prod_{i=1}^n f(x_i \mid \theta)$$

The Maximum Likelihood Estimator, $\hat{\theta}$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \ L(\theta) = \underset{\theta}{\operatorname{argmax}} \ \log L(\theta)$$

Invariance Principle

If $\hat{\theta}$ is the MLE of θ and the function $h(\theta)$ is continuous, then $h(\hat{\theta})$ is the MLE of $h(\theta)$.

Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$. That is

$$f(x \mid \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots \quad \lambda > 0$$

Example: Find the maximum likelihood estimator of P[X = 4], call it $\hat{P}[X = 4]$. Calculate an **estimate** using this *estimator* when

$$x_1 = 1, \ x_2 = 2, \ x_3 = 4, \ x_4 = 2.$$

Some Brief History

Who Is This?

Who Is This?

Another Example

Let X_1, X_2, \dots, X_n iid from a population with pdf

$$f(x \mid \theta) = \frac{1}{\theta} x^{(1-\theta)/\theta}, \quad 0 < x < 1, \ 0 < \theta < \infty$$

Find the maximum likelihood estimator of θ , call it $\hat{\theta}$.

A Different Example

Let X_1, X_2, \dots, X_n iid from a population with pdf

$$f(x \mid \theta) = \frac{\theta}{x^2}, \quad 0 < \theta \le x < \infty$$

Find the maximum likelihood estimator of θ , call it $\hat{\theta}$.

Example: Gamma

Let $X_1, X_2, \ldots, X_n \sim \text{iid gamma}(\alpha, \beta)$ with α known.

Find the maximum likelihood estimator of β , call it $\hat{\beta}$.

Next Time

- More examples?
- Why does this work?
- Why do we need both MLE and MoM?
- How do we use these methods in practice?