Estimation III: Method of Moments and Maximum Likelihood

Stat 3202 @ OSU

Dalpiaz

Let
$$X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$$
. That is

$$f(x \mid \lambda) = \frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots, \lambda > 0$$

How should we estimate λ ?

The k^{th} **population moment** of a RV (about the origin) is

 $\boldsymbol{\mu}_{k}^{'}=\mathsf{E}\left[\boldsymbol{Y}^{k}\right]$

The k^{th} sample moment is

$$m_{k}^{'} = \overline{Y^{k}} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{k}$$

The **Method of Moments** (MoM) consists of equating sample moments and population moments. If a population has *t* parameters, the MOM consists of solving the system of equations

$$m_{k}^{'} = \mu_{k}^{'}, \ k = 1, 2, \dots, t$$

for the *t* parameters.

Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$. That is

$$f(x \mid \lambda) = \frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots, \lambda > 0$$

Find a method of moments estimator of λ , call it $\tilde{\lambda}$.

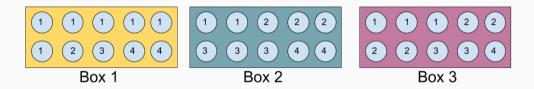
Let X_1, X_2, \ldots, X_n be iid $N(\theta, \sigma^2)$.

Use the method of moments to estimate the *parameter vector* (θ, σ^2) .

Let $X_1, X_2, ..., X_n$ be iid $N(1, \sigma^2)$.

Find a method of moments estimator of σ^2 , call it $\tilde{\sigma}^2$.

Calculus???



Let $Y \sim \text{binom}(n = 100, p)$.

Suppose we observe a single observation x = 60.

- $x^m x^n = x^{m+n}$
- $(x^m)^n = x^{mn}$
- $\log(ab) = \log(a) + \log(b)$
- $\log(a/b) = \log(a) \log(b)$
- $\log(a^b) = b \log(a)$
- $\prod_{i=1}^n x_i = x_1 \cdot x_2 \cdot \cdots \cdot x_n$
- $\prod_{i=1}^{n} x_i^a = \left(\prod_{i=1}^{n} x_i\right)^a$
- $\log\left(\prod_{i=1}^n x_i\right) = \sum_{i=1}^n \log(x_i)$

Let
$$X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$$
. That is

$$f(x \mid \lambda) = \frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots, \lambda > 0$$

Find the maximum likelihood estimator of λ , call it $\hat{\lambda}$.

Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathsf{Poisson}(\lambda)$. That is

$$f(x \mid \lambda) = \frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots, \lambda > 0$$

Calculate the maximum likelihood estimate of $\lambda,$ when

$$x_1 = 1, x_2 = 2, x_3 = 4, x_4 = 2.$$

Maximum Likelihood Estimation (MLE)

Given a random sample X_1, X_2, \ldots, X_n from a population with parameter θ and density or mass $f(x \mid \theta)$, we have:

The Likelihood, $L(\theta)$,

$$L(\theta) = f(x_1, x_2, \ldots, x_n) = \prod_{i=1}^n f(x_i \mid \theta)$$

The Maximum Likelihood Estimator, $\hat{\theta}$

$$\hat{ heta} = rgmax_{ heta} \, L(heta) = rgmax_{ heta} \, \log L(heta)$$

If $\hat{\theta}$ is the MLE of θ and the function $h(\theta)$ is continuous, then $h(\hat{\theta})$ is the MLE of $h(\theta)$. Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \text{Poisson}(\lambda)$. That is

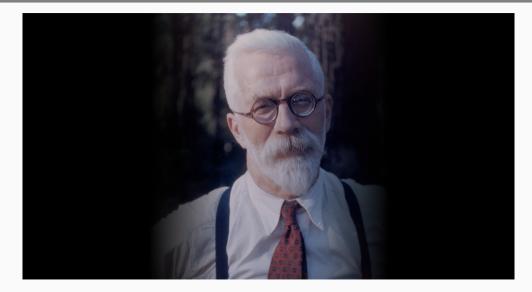
$$f(x \mid \lambda) = rac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \dots, \quad \lambda > 0$$

• **Example:** Find the maximum likelihood estimator of P[X = 4], call it $\hat{P}[X = 4]$. Calculate an **estimate** using this *estimator* when

$$x_1 = 1, x_2 = 2, x_3 = 4, x_4 = 2.$$

Some Brief History

Who Is This?



Who Is This?

Let X_1, X_2, \ldots, X_n iid from a population with pdf

$$f(x \mid heta) = rac{1}{ heta} x^{(1- heta)/ heta}, \quad 0 < x < 1, \; 0 < heta < \infty$$

Find the maximum likelihood estimator of θ , call it $\hat{\theta}$.

Let X_1, X_2, \ldots, X_n iid from a population with pdf

$$f(x \mid \theta) = rac{ heta}{x^2}, \quad 0 < heta \leq x < \infty$$

Find the maximum likelihood estimator of θ , call it $\hat{\theta}$.

Let $X_1, X_2, \ldots, X_n \sim \text{iid gamma}(\alpha, \beta)$ with α known.

Find the maximum likelihood estimator of β , call it $\hat{\beta}$.

Let Y_1, Y_2, \ldots, Y_n be a random sample from a distribution with pdf

$$f(y \mid \alpha) = \frac{2}{\alpha} \cdot y \cdot \exp\left\{-\frac{y^2}{\alpha}\right\}, \quad y > 0, \quad \alpha > 0.$$

Find the maximum likelihood **estimator** of α .

Suppose that a random variable X follows a discrete distribution, which is determined by a parameter θ which can take *only two values*, $\theta = 1$ or $\theta = 2$. The parameter θ is unknown. If $\theta = 1$, then X follows a Poisson distribution with parameter $\lambda = 2$. If $\theta = 2$, then X follows a Geometric distribution with parameter p = 0.25. Now suppose we observe X = 3. Based on this data, what is the maximum likelihood **estimate** of θ ?

Let
$$Y_1, Y_2, \dots, Y_n \stackrel{\text{iid}}{\sim} f(y \mid \theta) = \begin{cases} rac{2\theta^2}{y^3} & heta \leq y < \infty \\ 0 & ext{otherwise} \end{cases}$$

Find the maximum likelihood **estimator** of θ .

- More examples?
- Why does this work?
- Why do we need both MLE and MoM?
- How do we use these methods in practice?