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A Standard Setup

Let X1,X2, . . . ,Xn
iid∼ Poisson(λ). That is

f (x | λ) = λx e−λ

x ! , x = 0, 1, 2, . . . λ > 0

How should we estimate λ?
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Population and Sample Moments

The k th population moment of a RV (about the origin) is

µ
′

k = E
[
Y k]

The k th sample moment is

m
′

k = Y k = 1
n

n∑
i=1

Y k
i
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The Method of Moments (MoM)

The Method of Moments (MoM) consists of equating sample moments and population
moments. If a population has t parameters, the MOM consists of solving the system of equations

m
′

k = µ
′

k , k = 1, 2, . . . , t

for the t parameters.
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Example: Poisson

Let X1,X2, . . . ,Xn
iid∼ Poisson(λ). That is

f (x | λ) = λx e−λ

x ! , x = 0, 1, 2, . . . λ > 0

Find a method of moments estimator of λ, call it λ̃.
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Example: Normal, Two Unknowns

Let X1,X2, . . . ,Xn be iid N(θ, σ2).

Use the method of moments to estimate the parameter vector
(
θ, σ2).
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Example: Normal, Mean Known

Let X1,X2, . . . ,Xn be iid N(1, σ2).

Find a method of moments estimator of σ2, call it σ̃2.
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Calculus???
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A Game Show / An Idea
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Is a Coin Fair?

Let Y ∼ binom(n = 100, p).

Suppose we observe a single observation x = 60.
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Log Rules

• xmxn = xm+n

• (xm)n = xmn

• log(ab) = log(a) + log(b)
• log(a/b) = log(a)− log(b)
• log(ab) = b log(a)
•
∏n

i=1 xi = x1 · x2 · · · · · xn

•
∏n

i=1 xa
i =

(∏n
i=1 xi

)a

• log
(∏n

i=1 xi
)

=
∑n

i=1 log(xi)
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Example: Poisson

Let X1,X2, . . . ,Xn
iid∼ Poisson(λ). That is

f (x | λ) = λx e−λ

x ! , x = 0, 1, 2, . . . λ > 0

Find the maximum likelihood estimator of λ, call it λ̂.
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Example: Poisson

Let X1,X2, . . . ,Xn
iid∼ Poisson(λ). That is

f (x | λ) = λx e−λ

x ! , x = 0, 1, 2, . . . λ > 0

Calculate the maximum likelihood estimate of λ, when

x1 = 1, x2 = 2, x3 = 4, x4 = 2.
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Maximum Likelihood Estimation (MLE)

Given a random sample X1,X2, . . . ,Xn from a population with parameter θ and density or mass
f (x | θ), we have:

The Likelihood, L(θ),

L(θ) = f (x1, x2, . . . , xn) =
n∏

i=1
f (xi | θ)

The Maximum Likelihood Estimator, θ̂

θ̂ = argmax
θ

L(θ) = argmax
θ

log L(θ)

15



Invariance Principle

If θ̂ is the MLE of θ and the function h(θ) is continuous, then h(θ̂) is the MLE of h(θ).

Let X1,X2, . . . ,Xn
iid∼ Poisson(λ). That is

f (x | λ) = λx e−λ

x ! , x = 0, 1, 2, . . . λ > 0

• Example: Find the maximum likelihood estimator of P[X = 4], call it P̂[X = 4]. Calculate
an estimate using this estimator when

x1 = 1, x2 = 2, x3 = 4, x4 = 2.
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Some Brief History
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Who Is This?
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Who Is This?
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Another Example

Let X1,X2, . . . ,Xn iid from a population with pdf

f (x | θ) = 1
θ

x (1−θ)/θ, 0 < x < 1, 0 < θ <∞

Find the maximum likelihood estimator of θ, call it θ̂.
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A Different Example

Let X1,X2, . . . ,Xn iid from a population with pdf

f (x | θ) = θ

x2 , 0 < θ ≤ x <∞

Find the maximum likelihood estimator of θ, call it θ̂.
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Example: Gamma

Let X1,X2, . . . ,Xn ∼ iid gamma(α, β) with α known.

Find the maximum likelihood estimator of β, call it β̂.
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More Practice

Let Y1,Y2, . . . ,Yn be a random sample from a distribution with pdf

f (y | α) = 2
α
· y · exp

{
−y2

α

}
, y > 0, α > 0.

Find the maximum likelihood estimator of α.
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More Practice

Suppose that a random variable X follows a discrete distribution, which is determined by a
parameter θ which can take only two values, θ = 1 or θ = 2. The parameter θ is unknown. If
θ = 1, then X follows a Poisson distribution with parameter λ = 2. If θ = 2, then X follows a
Geometric distribution with parameter p = 0.25. Now suppose we observe X = 3. Based on this
data, what is the maximum likelihood estimate of θ?
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More More More

Let Y1,Y2, . . . ,Yn
iid∼ f (y | θ) =


2θ2

y3 θ ≤ y <∞

0 otherwise

Find the maximum likelihood estimator of θ.
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Next Time

• More examples?
• Why does this work?
• Why do we need both MLE and MoM?
• How do we use these methods in practice?
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