## Practice Problems #7 SOLUTIONS

The following are a number of practice problems that may be *helpful* for completing the homework, and will likely be **very useful** for studying for exams.

1. Consider two continuous random variables X and Y with joint p.d.f.

$$f(x,y) = \begin{cases} \frac{2}{81}x^2 y & 0 < x < K, \ 0 < y < K \\ 0 & \text{otherwise} \end{cases}$$

a) Find the value of K so that f(x, y) is a valid joint p.d.f.

$$1 = \int_{0.0}^{KK} \frac{2}{81} x^2 y \, dx \, dy = \frac{K^5}{243}. \qquad \Rightarrow K = 3.$$

b) Find P(X > 3Y).

$$P(X > 3Y) = \int_{0}^{3} \left( \int_{0}^{x/3} \frac{2}{81} x^{2} y \, dy \right) dx$$
$$= \int_{0}^{3} \frac{1}{729} x^{4} \, dx = \frac{1}{15}.$$



$$P(X > 3Y) = \int_{0}^{1} \left( \int_{3y}^{3} \frac{2}{81} x^{2} y dx \right) dy = \dots = \frac{1}{15}.$$

c) Find P(X+Y>3).

$$P(X+Y>3) = \int_{0}^{3} \left(\int_{3-x}^{3} \frac{2}{81} x^{2} y \, dy\right) dx$$

$$= \int_{0}^{3} \frac{1}{81} x^{2} \left[9 - (3-x)^{2}\right] dx$$

$$= \frac{1}{81} \cdot \int_{0}^{3} \left(6x^{3} - x^{4}\right) dx$$

$$= \frac{1}{81} \cdot \left(\frac{3}{2}x^{4} - \frac{1}{5}x^{5}\right) \Big|_{0}^{3} = \frac{1}{81} \cdot \left(\frac{243}{2} - \frac{243}{5}\right) = \mathbf{0.90}.$$

OR

$$P(X+Y>3) = 1 - \int_{0}^{3} \left( \int_{0}^{3-x} \frac{2}{81} x^{2} y \, dy \right) dx = 1 - \int_{0}^{3} \frac{1}{81} x^{2} (3-x)^{2} \, dx$$

$$= 1 - \frac{1}{81} \cdot \int_{0}^{3} \left( 9x^{2} - 6x^{3} + x^{4} \right) dx = 1 - \frac{1}{81} \cdot \left( 3x^{3} - \frac{3}{2}x^{4} + \frac{1}{5}x^{5} \right) \Big|_{0}^{3}$$

$$= 1 - \frac{1}{81} \cdot \left( 81 - \frac{243}{2} + \frac{243}{5} \right) = \mathbf{0.90}.$$

d) Are X and Y independent? If not, find Cov(X, Y).

$$f_{X}(x) = \int_{0}^{3} \frac{2}{81} x^{2} y dy = \frac{1}{9} x^{2}, \quad 0 < x < 3,$$

$$f_{Y}(y) = \int_{0}^{3} \frac{2}{81} x^{2} y dx = \frac{2}{9} y, \quad 0 < y < 3.$$

 $f(x, y) = f_X(x) \cdot f_Y(y)$ .  $\Rightarrow$  X and Y are **independent**. Cov(X, Y) = 0.

2. Let X denote the number of times a photocopy machine will malfunction: 0, 1, 2, or 3 times, on any given month. Let Y denote the number of times a technician is called on an emergency call. The joint p.m.f. p(x, y) is presented in the table below:

|            | X    |      |      |      |                |
|------------|------|------|------|------|----------------|
| у          | 0    | 1    | 2    | 3    | $p_{\rm Y}(y)$ |
| 0          | 0.15 | 0.30 | 0.05 | 0    | 0.50           |
| 1          | 0.05 | 0.15 | 0.05 | 0.05 | 0.30           |
| 2          | 0    | 0.05 | 0.10 | 0.05 | 0.20           |
| $p_{X}(x)$ | 0.20 | 0.50 | 0.20 | 0.10 | 1.00           |

a) Find the probability P(Y > X).

$$P(Y > X) = p(0, 1) + p(1, 2) = 0.05 + 0.05 = 0.10.$$

- b) Find  $p_X(x)$ , the marginal p.m.f. of X.
- c) Find  $p_{Y}(y)$ , the marginal p.m.f. of Y.
- d) Are X and Y independent? If not, find Cov(X, Y).

X and Y are **NOT independent**.

$$E(X) = 0 \times 0.20 + 1 \times 0.50 + 2 \times 0.20 + 3 \times 0.10 = 1.2.$$

$$E(Y) = 0 \times 0.50 + 1 \times 0.30 + 2 \times 0.20 = 0.7.$$

$$E(XY) = 1 \times 0.15 + 2 \times 0.05 + 3 \times 0.05 + 2 \times 0.05 + 4 \times 0.10 + 6 \times 0.05 = 1.2.$$

$$Cov(X, Y) = E(XY) - E(X) \times E(Y) = 1.2 - 1.2 \times 0.70 = 0.36.$$

3. Let the joint probability density function for (X, Y) be

$$f(x,y)=\frac{x+y}{2},$$

$$x > 0$$
,  $y > 0$ ,

$$3x + y < 3$$
,

zero otherwise.

a) Find the probability P(X < Y).



intersection point:

$$y = x \quad \text{and} \quad x + 3y = 3$$

$$x = \frac{3}{4} \quad \text{and} \quad y = \frac{3}{4}$$



$$P(X < Y) = \int_{0}^{3/4} \left( \int_{x}^{3-3x} \frac{x+y}{2} dy \right) dx$$
$$= \int_{0}^{3/4} \left( \frac{9}{4} - 3x \right) dx = \frac{27}{32}.$$

OR

$$P(X < Y) = 1 - \int_{0}^{3/4} \left( \int_{y}^{1-(y/3)} \frac{x+y}{2} dx \right) dy = 1 - \int_{0}^{3/4} \left( \frac{1}{4} + \frac{1}{3}y - \frac{8}{9}y^{2} \right) dy = \frac{27}{32}.$$

b) Find the marginal probability density function of X,  $f_X(x)$ .

$$f_X(x) = \int_0^{3-3x} \frac{x+y}{2} dy = \frac{9}{4} - 3x + \frac{3}{4}x^2, \qquad 0 < x < 1.$$

c) Find the marginal probability density function of Y,  $f_{Y}(y)$ .

$$f_{Y}(y) = \int_{0}^{1-(y/3)} \frac{x+y}{2} dx = \frac{1}{4} + \frac{1}{3}y - \frac{5}{36}y^{2}, \qquad 0 < y < 3.$$

d) Are X and Y independent? If not, find Cov(X, Y).

The support of (X, Y) is NOT a rectangle.  $\Rightarrow$  X and Y are **NOT independent**.

OR

 $f_{X,Y}(x,y) \neq f_X(x) \times f_Y(y)$ .  $\Rightarrow$  X and Y are **NOT independent**.

$$E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \int_{0}^{1} x \cdot \left(\frac{9}{4} - 3x + \frac{3}{4}x^2\right) dx$$
$$= \int_{0}^{1} \left(\frac{9}{4}x - 3x^2 + \frac{3}{4}x^3\right) dx = \frac{9}{8} - 1 + \frac{3}{16} = \frac{5}{16}.$$

$$E(Y) = \int_{-\infty}^{\infty} y \cdot f_{Y}(y) dy = \int_{0}^{3} y \cdot \left(\frac{1}{4} + \frac{1}{3}y - \frac{5}{36}y^{2}\right) dy$$
$$= \int_{0}^{3} \left(\frac{1}{4}y + \frac{1}{3}y^{2} - \frac{5}{36}y^{3}\right) dy = \frac{9}{8} + 3 - \frac{405}{144} = \frac{21}{16}.$$

$$E(XY) = \int_{0}^{1} \left( \int_{0}^{3-3x} x y \cdot \frac{x+y}{2} dy \right) dx = \int_{0}^{1} \left( \frac{x^{2}}{4} (3-3x)^{2} + \frac{x}{6} (3-3x)^{3} \right) dx$$
$$= \int_{0}^{1} \left( \frac{9}{2} x - \frac{45}{4} x^{2} + 9x^{3} - \frac{9}{4} x^{4} \right) dx = \frac{9}{4} - \frac{15}{4} + \frac{9}{4} - \frac{9}{20} = \frac{6}{20} = \frac{3}{10}.$$

$$Cov(X,Y) = E(XY) - E(X) \times E(Y) = \frac{3}{10} - \frac{5}{16} \times \frac{21}{16} = -\frac{141}{1280} \approx -0.11016.$$

**4.** Let the joint probability density function for (X, Y) be

$$f(x,y) = \frac{x+y}{3}$$
,  $0 < x < 2$ ,  $0 < y < 1$ , zero otherwise.

a) Find the probability P(X > Y).



$$P(X > Y) = 1 - \int_{0}^{1} \left( \int_{0}^{y} \frac{x + y}{3} dx \right) dy$$
$$= 1 - \int_{0}^{1} \left( \frac{y^{2}}{6} + \frac{y^{2}}{3} \right) dy$$
$$= 1 - \int_{0}^{1} \frac{y^{2}}{2} dy = 1 - \frac{1}{6} = \frac{5}{6}.$$

OR 
$$P(X>Y) = \int_{0}^{1} \left( \int_{y}^{2} \frac{x+y}{3} dx \right) dy = \dots$$

OR 
$$P(X > Y) = \int_{0}^{1} \left( \int_{0}^{x} \frac{x+y}{3} dy \right) dx + \int_{1}^{2} \left( \int_{0}^{1} \frac{x+y}{3} dy \right) dx = ...$$

b) Find the marginal probability density function of X,  $f_X(x)$ .

$$f_X(x) = \int_0^1 \frac{x+y}{3} dy = \left(\frac{xy}{3} + \frac{y^2}{6}\right) \Big|_0^1 = \frac{2x+1}{6},$$
  $0 < x < 2.$ 

c) Find the marginal probability density function of Y,  $f_{Y}(y)$ .

$$f_{Y}(y) = \int_{0}^{2} \frac{x+y}{3} dx = \left(\frac{x^{2}}{6} + \frac{xy}{3}\right) \Big|_{0}^{2} = \frac{2+2y}{3},$$
  $0 < y < 1.$ 

d) Are X and Y independent? If not, find Cov(X, Y).

Since  $f(x, y) \neq f_X(x) \cdot f_Y(y)$ , X and Y are **NOT independent**.

$$E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \int_{0}^{2} x \cdot \frac{2x+1}{6} dx = \left(\frac{x^3}{9} + \frac{x^2}{12}\right) \Big|_{0}^{2} = \frac{11}{9}.$$

$$E(Y) = \int_{-\infty}^{\infty} y \cdot f_{Y}(y) dy = \int_{0}^{1} y \cdot \frac{2 + 2y}{3} dy = \left( \frac{y^{2}}{3} + \frac{y^{3}}{9} \right) \Big|_{0}^{1} = \frac{5}{9}.$$

$$E(XY) = \int_{0}^{2} \left( \int_{0}^{1} x y \cdot \frac{x+y}{3} dy \right) dx = \int_{0}^{2} \left( \frac{x^{2}}{6} + \frac{x}{9} \right) dx = \left( \frac{x^{3}}{18} + \frac{x^{2}}{18} \right) \Big|_{0}^{2} = \frac{2}{3}.$$

$$Cov(X,Y) = E(XY) - E(X) \times E(Y) = \frac{2}{3} - \frac{11}{9} \cdot \frac{5}{9} = -\frac{1}{81} \approx -0.012345679.$$

5. Two components of a laptop computer have the following joint probability density function for their useful lifetimes X and Y (in years):

$$f(x, y) = \begin{cases} x e^{-x(1+y)} & x \ge 0, y \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

a) Find the marginal probability density function of X,  $f_X(x)$ .

$$f_X(x) = \int_0^\infty x e^{-x(1+y)} dy = x e^{-x} \int_0^\infty e^{-xy} dy = e^{-x}, \qquad x \ge 0.$$

b) Find the marginal probability density function of Y,  $f_{Y}(y)$ .

$$f_{Y}(y) = \int_{0}^{\infty} x e^{-x(1+y)} dx = \frac{1}{(1+y)^{2}},$$
  $y \ge 0.$ 

c) What is the probability that the lifetime of at least one component exceeds 1 year (when the manufacturer's warranty expires)?

$$P(X > 1 \cup Y > 1) = 1 - P(X \le 1 \cap Y \le 1) = 1 - \int_{0}^{1} \left( \int_{0}^{1} x e^{-x(1+y)} dy \right) dx$$

$$= 1 - \int_{0}^{1} x e^{-x} \left( \int_{0}^{1} e^{-xy} dy \right) dx = 1 - \int_{0}^{1} x e^{-x} \left( \frac{1}{x} - \frac{1}{x} e^{-x} \right) dx$$

$$= 1 - \int_{0}^{1} \left( e^{-x} - e^{-2x} \right) dx = 1 - \left( -e^{-x} + \frac{1}{2} e^{-2x} \right) \Big|_{0}^{1}$$

$$= 1 - \left( -e^{-1} + \frac{1}{2} e^{-2} \right) + \left( -1 + \frac{1}{2} \right) = \frac{1}{2} + e^{-1} - \frac{1}{2} e^{-2} \approx 0.800212.$$

$$P(X > 1 \cup Y > 1) = P(X > 1) + P(Y > 1) - P(X > 1 \cap Y > 1) = ...$$

6. Let the joint probability density function for (X, Y) be

$$f(x,y) = \frac{1}{2}e^{-y},$$
  
 
$$0 < y < \infty, \quad -y < x < y,$$

zero otherwise.



a) Find the marginal probability density function of X,  $f_X(x)$ .

If 
$$x < 0$$
,  $f_X(x) = \int_{-x}^{\infty} \frac{1}{2} e^{-y} dy = \frac{1}{2} e^x$ ,  $x < 0$ 

If 
$$x > 0$$
,  $f_X(x) = \int_{x}^{\infty} \frac{1}{2} e^{-y} dy = \frac{1}{2} e^{-x}$ ,  $x > 0$ 

$$f_{\rm X}(x) = \frac{1}{2} e^{-|x|}, \quad -\infty < x < \infty.$$
 (double exponential)

b) Find the marginal probability density function of Y,  $f_{Y}(y)$ .

$$f_{Y}(y) = \int_{-y}^{y} \frac{1}{2} e^{-y} dx = y e^{-y}, \qquad 0 < y < \infty.$$
 (Gamma,  $\alpha = 2, \theta = 1$ )

c) Are X and Y independent? If not, find Cov(X, Y).

The support of (X, Y) is NOT a rectangle.  $\Rightarrow$  X and Y are **NOT independent**.

$$f_{X,Y}(x,y) \neq f_X(x) \times f_Y(y)$$
.  $\Rightarrow$  X and Y are **NOT independent**.

$$E(X) = 0$$
, since the distribution of X is symmetric about 0.

$$E(Y) = 2$$
, since Y has a Gamma distribution,  $\alpha = 2$ ,  $\theta = 1$ .

$$E(XY) = \int_{0}^{\infty} \left( \int_{-y}^{y} \frac{1}{2} e^{-y} dx \right) dy = \int_{0}^{\infty} \frac{1}{2} e^{-y} \left( \int_{-y}^{y} dx \right) dy = 0.$$

$$Cov(X,Y) = E(XY) - E(X) \times E(Y) = \mathbf{0}.$$

Recall: Independent 
$$\Rightarrow$$
 Cov = 0

$$Cov = 0$$
  $\Longrightarrow$  Independent

7. Suppose Jane has a fair 4-sided die, and Dick has a fair 6-sided die. Each day, they roll their dice at the same time (independently) until someone rolls a "1". (Then the person who did not roll a "1" does the dishes.) Find the probability that ...

$$p_{\rm J}(x) = \left(\frac{3}{4}\right)^{x-1} \cdot \left(\frac{1}{4}\right), \ x = 1, 2, 3, \dots,$$

$$p_{\mathrm{D}}(y) = \left(\frac{5}{6}\right)^{y-1} \cdot \left(\frac{1}{6}\right), \ y = 1, 2, 3, \dots$$

a) they roll the first "1" at the same time (after equal number of attempts);

$$\sum_{k=1}^{\infty} p_{\mathrm{J}}(k) \cdot p_{\mathrm{D}}(k) = \sum_{k=1}^{\infty} \left(\frac{3}{4}\right)^{k-1} \cdot \left(\frac{1}{4}\right) \cdot \left(\frac{5}{6}\right)^{k-1} \cdot \left(\frac{1}{6}\right)$$

$$= \left(\frac{1}{24}\right) \cdot \sum_{n=0}^{\infty} \left(\frac{15}{24}\right)^n = \left(\frac{1}{24}\right) \cdot \frac{1}{1 - \frac{15}{24}} = \frac{1}{9}.$$

$$(\mathtt{J}\hspace{0.5mm}D) \quad \text{or} \quad (\mathtt{J}'\hspace{0.5mm}D')(\mathtt{J}\hspace{0.5mm}D) \quad \text{or} \quad (\mathtt{J}'\hspace{0.5mm}D')(\mathtt{J}'\hspace{0.5mm}D')(\mathtt{J}\hspace{0.5mm}D) \quad \text{or} \quad \dots$$

$$\left(\frac{1}{4} \cdot \frac{1}{6}\right) + \left(\frac{3}{4} \cdot \frac{5}{6}\right) \cdot \left(\frac{1}{4} \cdot \frac{1}{6}\right) + \left(\frac{3}{4} \cdot \frac{5}{6}\right) \cdot \left(\frac{3}{4} \cdot \frac{5}{6}\right) \cdot \left(\frac{1}{4} \cdot \frac{1}{6}\right) + \dots = \frac{\left(\frac{1}{4} \cdot \frac{1}{6}\right)}{1 - \left(\frac{3}{4} \cdot \frac{5}{6}\right)} = \frac{1}{9}.$$

b) Dick rolls the first "1" before Jane does.

$$\sum_{k=1}^{\infty} \sum_{m=k+1}^{\infty} p_{J}(m) \cdot p_{D}(k) = \sum_{k=1}^{\infty} \left(\frac{5}{6}\right)^{k-1} \cdot \left(\frac{1}{6}\right) \cdot \sum_{m=k+1}^{\infty} \left(\frac{3}{4}\right)^{m-1} \cdot \left(\frac{1}{4}\right)$$

$$= \sum_{k=1}^{\infty} \left(\frac{5}{6}\right)^{k-1} \cdot \left(\frac{1}{6}\right) \cdot \left(\frac{3}{4}\right)^{k} = \left(\frac{1}{8}\right) \cdot \sum_{n=0}^{\infty} \left(\frac{15}{24}\right)^{n} = \left(\frac{1}{8}\right) \cdot \frac{1}{1 - \frac{15}{24}} = \frac{1}{3}.$$

$$(J'D)$$
 or  $(J'D')(J'D)$  or  $(J'D')(J'D')(J'D)$  or ...

$$\left(\frac{3}{4} \cdot \frac{1}{6}\right) + \left(\frac{3}{4} \cdot \frac{5}{6}\right) \cdot \left(\frac{3}{4} \cdot \frac{1}{6}\right) + \left(\frac{3}{4} \cdot \frac{5}{6}\right) \cdot \left(\frac{3}{4} \cdot \frac{5}{6}\right) \cdot \left(\frac{3}{4} \cdot \frac{1}{6}\right) + \dots = \frac{\left(\frac{3}{4} \cdot \frac{1}{6}\right)}{1 - \left(\frac{3}{4} \cdot \frac{5}{6}\right)} = \frac{1}{3}.$$

**8.** Dick and Jane have agreed to meet for lunch between noon (0:00 p.m.) and 1:00 p.m. Denote Jane's arrival time by X, Dick's by Y, and suppose X and Y are independent with probability density functions

$$f_{X}(x) = \begin{cases} 3x^{2} & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases} \qquad f_{Y}(y) = \begin{cases} 2y & 0 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$$

a) Find the probability that Jane arrives before Dick. That is, find P(X < Y).

$$f(x, y) = 6x^2y$$
,  $0 \le x \le 1$ ,  $0 \le y \le 1$ .

$$P(X < Y) = \int_{0}^{1} \left( \int_{0}^{y} 6x^{2}y \, dx \right) dy = \int_{0}^{1} y \left( \int_{0}^{y} 6x^{2} \, dx \right) dy$$

$$= \int_{0}^{1} y \left(2 x^{3}\right)_{0}^{y} dy = \int_{0}^{1} 2 y^{4} dy = \left(\frac{2}{5} y^{5}\right)_{0}^{1} = \frac{2}{5}.$$



$$P(X < Y) = \int_{0}^{1} \left( \int_{x}^{1} 6 x^{2} y \, dy \right) dx = \int_{0}^{1} x^{2} \left( \int_{x}^{1} 6 y \, dy \right) dx = \int_{0}^{1} x^{2} \left( 3 y^{2} \right)_{x}^{1} dx$$
$$= \int_{0}^{1} \left( 3 x^{2} - 3 x^{4} \right) dx = \left( x^{3} - \frac{3}{5} x^{5} \right)_{0}^{1} = \frac{2}{5}.$$

b) Find the expected amount of time Jane would have to wait for Dick to arrive.

Hint 1: If Dick arrives first (that is, if X > Y), then Jane's waiting time is zero. If Jane arrives first (that is, if X < Y), then her waiting time is Y - X.

Hint 2: 
$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \cdot f(x,y) dx dy$$

$$f(x, y) = 6x^2y$$
,  $0 \le x \le 1$ ,  $0 \le y \le 1$ .

- ① y > x Jane is waiting for Dick. Jane's waiting time = y - x
- ② x > y Dick is waiting for Jane. Jane's waiting time = 0



$$\int_{0}^{1} \left( \int_{0}^{y} (y - x) \cdot 6 x^{2} y \, dx \right) dy + \int_{0}^{1} \left( \int_{0}^{x} 0 \cdot 6 x^{2} y \, dy \right) dx$$

$$= \int_{0}^{1} \left( \int_{0}^{y} 6 x^{2} y^{2} \, dx \right) dy - \int_{0}^{1} \left( \int_{0}^{y} 6 x^{3} y \, dx \right) dy$$

$$= \int_{0}^{1} 2 y^{5} \, dy - \int_{0}^{1} 1.5 y^{5} \, dy = \frac{1}{3} - \frac{1}{4} = \frac{1}{12} \text{ hour} = 5 \text{ minutes.}$$

9. Suppose that (X, Y) is uniformly distributed over the region defined by  $-1 \le x \le 1$  and  $0 \le y \le 1 - x^2$ . That is,

$$f(x, y) = C$$
,  $-1 \le x \le 1$ ,  $0 \le y \le 1 - x^2$ , zero elsewhere.

a) What is the joint probability density function of X and Y? That is, find C.



$$\Rightarrow f_{X,Y}(x,y) = \frac{3}{4}, \quad -1 \le x \le 1, \quad 0 \le y \le 1 - x^2.$$

b) Find the marginal probability density function of X,  $f_X(x)$ .

$$f_{X}(x) = \int_{0}^{1-x^{2}} \frac{3}{4} dy = \frac{3}{4} (1-x^{2}), -1 \le x \le 1.$$

c) Find the marginal probability density function of Y,  $f_Y(y)$ .

$$y = 1 - x^2 \qquad \qquad x = \pm \sqrt{1 - y}$$

$$f_{Y}(y) = \int_{-\sqrt{1-y}}^{\sqrt{1-y}} \frac{3}{4} dx = \frac{3}{2} \sqrt{1-y}, \quad 0 \le y \le 1.$$

**10.** Let  $T_1, T_2, \dots, T_k$  be independent Exponential random variables.

Suppose 
$$E(T_i) = \frac{1}{\lambda_i}, \quad i = 1, 2, ..., k.$$

That is, 
$$f_{T_i}(t) = \lambda_i e^{-\lambda_i t}$$
,  $t > 0$ ,  $i = 1, 2, ..., k$ .

Denote  $T_{\min} = \min(T_1, T_2, \dots, T_k)$ .

a) Show that  $T_{min}$  also has an Exponential distribution. What is the mean of  $T_{min}$ ?

Hint: Consider  $P(T_{\min} > t) = P(T_1 > t \text{ AND } T_2 > t \text{ AND } \dots \text{ AND } T_k > t)$ .

Since  $T_1, T_2, \dots, T_k$  are independent,

$$P(T_{\min} > t) = P(T_1 > t \text{ AND } T_2 > t \text{ AND } \dots \text{ AND } T_k > t)$$

$$= P(T_1 > t) \times P(T_2 > t) \times \dots \times P(T_k > t)$$

$$= e^{-\lambda_1 t} \times e^{-\lambda_2 t} \times \dots \times e^{-\lambda_k t}$$

$$= e^{-(\lambda_1 + \lambda_2 + \dots + \lambda_k) t}, \qquad t > 0.$$

$$F_{T_{\min}}(t) = P(T_{\min} \le t) = 1 - P(T_{\min} > t) = 1 - e^{-(\lambda_1 + \lambda_2 + \dots + \lambda_k)t}, \quad t > 0.$$

$$f_{\mathrm{T_{min}}}(t) = (\lambda_1 + \lambda_2 + \dots + \lambda_k) e^{-(\lambda_1 + \lambda_2 + \dots + \lambda_k)t}, \qquad t > 0.$$

 $\Rightarrow$   $T_{min}$  has an Exponential distribution with mean  $\frac{1}{\lambda_1 + \lambda_2 + ... + \lambda_k}$ .

b) Find 
$$P(T_1 = T_{min}) = P(T_1 \text{ is the smallest of } T_1, T_2, ..., T_k)$$
  
=  $P(T_1 < T_2 \text{ AND } ... \text{ AND } T_1 < T_k)$ .

"Hint": A good place to start is to consider  $T_1, T_2$  and show that  $P(T_1 < T_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2}$ .

$$P(T_{1} < T_{2}) = \int_{0}^{\infty} \left( \int_{t_{1}}^{\infty} \lambda_{1} e^{-\lambda_{1}t_{1}} \lambda_{2} e^{-\lambda_{2}t_{2}} dt_{2} \right) dt_{1}$$
$$= \int_{0}^{\infty} \lambda_{1} e^{-\lambda_{1}t_{1}} e^{-\lambda_{2}t_{1}} dt_{1} = \frac{\lambda_{1}}{\lambda_{1} + \lambda_{2}}.$$

Since  $T_1, T_2, \ldots, T_k$  are independent, their joint probability density function is

$$\begin{split} f(t_1,t_2,\ldots,t_k) &= \lambda_1 e^{-\lambda_1 t_1} \lambda_2 e^{-\lambda_2 t_2} \ldots \lambda_k e^{-\lambda_k t_k}, \\ t_1 &> 0, \ t_2 > 0, \ldots, \ t_k > 0. \end{split}$$

$$\begin{split} \mathsf{P}(\mathsf{T}_1 = \mathsf{T}_{\min}) &= \mathsf{P}(\mathsf{T}_1 < \mathsf{T}_2 \; \mathsf{AND} \; \dots \; \mathsf{AND} \; \mathsf{T}_1 < \mathsf{T}_k) \\ &= \int\limits_0^\infty \left( \int\limits_{t_1}^\infty \dots \int\limits_{t_1}^\infty \lambda_1 \, e^{-\lambda_1 t_1} \, \lambda_2 \, e^{-\lambda_2 t_2} \, \dots \lambda_k \, e^{-\lambda_k t_k} \, dt_2 \dots dt_k \right) dt_1 \\ &= \int\limits_0^\infty \lambda_1 \, e^{-\lambda_1 t_1} \left( \int\limits_{t_1}^\infty \lambda_2 \, e^{-\lambda_2 t_2} \, dt_2 \right) \dots \left( \int\limits_{t_1}^\infty \lambda_k \, e^{-\lambda_k t_k} \, dt_k \right) dt_1 \\ &= \int\limits_0^\infty \lambda_1 \, e^{-\lambda_1 t_1} \, e^{-\lambda_2 t_1} \dots \, e^{-\lambda_k t_1} \, dt_1 \\ &= \frac{\lambda_1}{\lambda_1 + \lambda_2 + \dots + \lambda_k}. \end{split}$$