STAT 400

1. Let $\tau > 0$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x;\tau) = \frac{\tau^5}{8} x^{14} e^{-\tau x^3}, \qquad x > 0.$$

Obtain the maximum likelihood estimator of τ , $\hat{\tau}$.

2. Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with probability density function

$$f(x) = \frac{2(\theta - x)}{\theta^2} \qquad \qquad 0 < x < \theta \qquad \qquad \theta > 0.$$

- a) Obtain the method of moments estimator of θ , $\tilde{\theta}$.
- b) Is $\tilde{\theta}$ an unbiased estimator for θ ? c) Find Var($\tilde{\theta}$).
- 3. Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from the distribution with probability density function

$$f(x;\lambda) = \frac{2\sqrt{\lambda}}{\sqrt{\pi}} e^{-\lambda x^2}, \quad x > 0, \qquad \lambda > 0.$$

- a) Obtain the maximum likelihood estimator of λ , $\hat{\lambda}$.
- b) Suppose n = 4, and $x_1 = 0.2$, $x_2 = 0.6$, $x_3 = 1.1$, $x_4 = 1.7$. Find the maximum likelihood estimate of λ .
- c) Obtain the method of moments estimator of λ , $\widetilde{\lambda}$.
- d) Suppose n = 4, and $x_1 = 0.2$, $x_2 = 0.6$, $x_3 = 1.1$, $x_4 = 1.7$. Find a method of moments estimate of λ .

e) Find a closed-form expression for
$$E(X^k)$$
, $k \ge -1$.

4. Let $\lambda > 0$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x;\lambda) = \frac{\lambda^2}{2} e^{-\lambda\sqrt{x}}, \qquad x > 0,$$
 zero otherwise.

a) Find the maximum likelihood estimator of
$$\lambda$$
, $\hat{\lambda}$.

- b) Suppose n = 4, and $x_1 = 0.81$, $x_2 = 1.96$, $x_3 = 0.36$, $x_4 = 0.09$. Find the maximum likelihood estimate of λ , $\hat{\lambda}$.
- c) Find a closed-form expression for $E(X^k)$ for $k \ge -1$.
 - "Hint" 1: $u = \sqrt{x}$.

"Hint" 2:
$$\frac{\lambda^{\alpha}}{\Gamma(\alpha)} u^{\alpha-1} e^{-\lambda u}$$
 is the p.d.f. of Gamma($\alpha, \theta = \frac{1}{\lambda}$) distribution

- d) Find E(X) and Var(X).
- e) Find a method of moments estimator of λ , $\tilde{\lambda}$.
- f) Suppose n = 4, and $x_1 = 0.81$, $x_2 = 1.96$, $x_3 = 0.36$, $x_4 = 0.09$. Find a method of moments estimate of λ , $\tilde{\lambda}$.
- 5. Let $\lambda > 0$ and let X_1, X_2, \dots, X_n be independent random variables, each with the probability density function

$$f(x; \lambda) = \frac{\lambda}{x^{\lambda+1}}, \qquad x > 1.$$

- a) (i) Find the maximum likelihood estimator of λ , $\hat{\lambda}$.
 - (ii) Suppose n = 5, and $x_1 = 1.3$, $x_2 = 1.4$, $x_3 = 2$, $x_4 = 3$, $x_5 = 5$. Find the maximum likelihood estimate of λ .

- b) (i) Find a method of moments estimator of λ , $\tilde{\lambda}$. (Assume $\lambda > 1$.)
 - (ii) Suppose n = 5, and $x_1 = 1.3$, $x_2 = 1.4$, $x_3 = 2$, $x_4 = 3$, $x_5 = 5$. Find a method of moments estimate of λ .
- 6. Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with probability mass function

$$P(X_i = 1) = \frac{\theta}{3+\theta}, \quad P(X_i = 2) = \frac{2}{3+\theta}, \quad P(X_i = 3) = \frac{1}{3+\theta}, \quad \theta > 0.$$

- a) Obtain the method of moments estimator $\tilde{\theta}$ of θ .
- b) Obtain the maximum likelihood estimator $\hat{\theta}$ of θ .
- 7. Bert and Ernie find a coin on the sidewalk on Sesame Street. They wish to estimate *p*, the probability of Heads. Bert got X Heads in N coin tosses (N is fixed, X is random). Ernie got Heads for the first time on the Yth coin toss (Y is random). They decide to combine their information in hope of a better estimate. (Assume independence.)
- a) What is the likelihood function L(p) = L(p; X, N, Y)?
- b) Obtain the maximum likelihood estimator for *p*.
- c) Explain intuitively why your estimator makes good sense.
- 8. Let $\theta \in \mathbb{R}$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x; \theta) = \frac{1}{2}e^{-|x-\theta|}, \qquad x \in \mathbb{R}.$$

- a) Find a method of moments estimator $\tilde{\theta}$ of θ .
- b) Find the maximum likelihood estimator $\hat{\theta}$ of θ .

9. A random sample of size n = 16 from $N(\mu, \sigma^2 = 64)$ yielded $\overline{x} = 85$. Construct the following confidence intervals for μ :

a) 95%. b) 90%. c) 80%.

10. What is the minimum sample size required for estimating μ for $N(\mu, \sigma^2 = 64)$ to within ± 3 with confidence level

a) 95%. b) 90%. c) 80%.

- 11. Suppose the overall (population) standard deviation of the bill amounts at a supermarket is $\sigma = 13.75 .
- a) Find the probability that the sample mean bill amount will be within \$2.00 of the overall mean bill amount for a random sample of 121 customers.
- b) What is the minimum sample size required for estimating the overall mean bill amount to within \$2.00 with 95% confidence?
- 12. 11. (continued) The supermarket selected a random sample of 121 customers, which showed the sample mean bill amount of \$78.80.
- c) Construct a 95% confidence interval for the overall mean bill amount at this supermarket.
- d) Suppose the supermarket puts Alex in charge of computing the confidence interval, and he gets the answer (76.15, 81.45). Alex says that he used a different confidence level, but other than that did everything correctly. Find the confidence level used by Alex.

Answers:

1. Let $\tau > 0$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x;\tau) = \frac{\tau^5}{8} x^{14} e^{-\tau x^3}, \qquad x > 0.$$

Obtain the maximum likelihood estimator of $\,\tau,\,\hat\tau\,.$

$$L(\tau) = \prod_{i=1}^{n} \left(\frac{\tau^{5}}{8} x_{i}^{14} e^{-\tau x_{i}^{3}} \right) = \frac{\tau^{5n}}{8^{n}} \left(\prod_{i=1}^{n} x_{i}^{14} \right) e^{-\tau \sum_{i=1}^{n} x_{i}^{3}}$$

$$\ln L(\tau) = 5n \cdot \ln \tau - n \cdot \ln 8 + 14 \sum_{i=1}^{n} \ln x_{i} - \tau \cdot \sum_{i=1}^{n} x_{i}^{3}$$

$$(\ln L(\tau))' = \frac{5n}{\tau} - \sum_{i=1}^{n} x_{i}^{3} = 0$$

$$\Rightarrow \quad \hat{\tau} = \frac{5n}{\sum_{i=1}^{n} x_{i}^{3}}.$$

2. Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with probability density function

$$f(x) = \frac{2(\theta - x)}{\theta^2} \qquad \qquad 0 < x < \theta \qquad \qquad \theta > 0.$$

a) Obtain the method of moments estimator of θ , $\tilde{\theta}$.

$$\mu = E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx = \int_{0}^{\theta} x \cdot \left(\frac{2}{\theta} - \frac{2}{\theta^2}x\right) dx = \left(\frac{x^2}{\theta} - \frac{2}{3} \cdot \frac{x^3}{\theta^2}\right) \Big|_{0}^{\theta} = \frac{\theta}{3}$$
$$\overline{X} = \frac{\widetilde{\theta}}{3}.$$
$$\widetilde{\theta} = 3 \cdot \overline{X} = 3 \cdot \frac{1}{n} \cdot \sum_{i=1}^{n} X_i$$

b)* Is $\tilde{\theta}$ an unbiased estimator for θ ?

$$E(\widetilde{\theta}) = E(3\overline{X}) = 3E(\overline{X}) = 3\mu = 3\frac{\theta}{3} = \theta.$$

$$\Rightarrow \qquad \widetilde{\theta}$$
 an unbiased estimator for θ .

c)* Find Var($\tilde{\theta}$).

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} \cdot f(x) dx = \int_{0}^{\theta} x^{2} \cdot \left(\frac{2}{\theta} - \frac{2}{\theta^{2}}x\right) dx = \frac{\theta^{2}}{\theta}.$$

$$\sigma^{2} = Var(X) = \frac{\theta^{2}}{\theta} - \frac{\theta^{2}}{\theta} = \frac{\theta^{2}}{18}.$$

$$Var(\tilde{\theta}) = Var(3\bar{X}) = 9 Var(\bar{X}) = 9 \cdot \frac{\sigma^{2}}{n} = 9 \cdot \frac{\theta^{2}}{18n} = \frac{\theta^{2}}{2n}.$$

3. Let $X_1, X_2, ..., X_n$ be a random sample of size n from the distribution with probability density function

$$f(x;\lambda) = \frac{2\sqrt{\lambda}}{\sqrt{\pi}} e^{-\lambda x^2}, \quad x > 0, \qquad \lambda > 0.$$

a) Obtain the maximum likelihood estimator of λ , $\hat{\lambda}$.

$$L(\lambda) = \prod_{i=1}^{n} \left(\frac{2\sqrt{\lambda}}{\sqrt{\pi}} e^{-\lambda x_{i}^{2}} \right).$$

$$\ln L(\lambda) = n \cdot \ln 2 + \frac{n}{2} \cdot \ln \lambda - \frac{n}{2} \cdot \ln \pi - \lambda \cdot \sum_{i=1}^{n} x_{i}^{2}.$$

$$(\ln L(\lambda))' = \frac{n}{2\lambda} - \sum_{i=1}^{n} x_{i}^{2} = 0. \qquad \Rightarrow \qquad \hat{\lambda} = \frac{n}{2\sum_{i=1}^{n} x_{i}^{2}}.$$

b) Suppose n = 4, and $x_1 = 0.2$, $x_2 = 0.6$, $x_3 = 1.1$, $x_4 = 1.7$. Find the maximum likelihood estimate of λ .

$$x_1 = 0.2, \quad x_2 = 0.6, \quad x_3 = 1.1, \quad x_4 = 1.7.$$

$$\sum_{i=1}^{n} x_i^2 = 4.5. \qquad \hat{\lambda} = \frac{4}{9} \approx 0.444.$$

c) Obtain the method of moments estimator of λ , $\widetilde{\lambda}$.

$$E(X) = \int_{0}^{\infty} x \cdot \frac{2\sqrt{\lambda}}{\sqrt{\pi}} e^{-\lambda x^{2}} dx \qquad u = \lambda x^{2} \qquad du = 2\lambda x dx$$
$$= \int_{0}^{\infty} \frac{1}{\sqrt{\pi \lambda}} e^{-u} du = \frac{1}{\sqrt{\pi \lambda}}.$$
$$\overline{X} = \frac{1}{\sqrt{\pi \lambda}}. \qquad \Rightarrow \qquad \widetilde{\lambda} = \frac{1}{\pi (\overline{X})^{2}}.$$

$$E(X^{2}) = \int_{0}^{\infty} x^{2} \cdot \frac{2\sqrt{\lambda}}{\sqrt{\pi}} e^{-\lambda x^{2}} dx = \dots = \frac{1}{2\lambda}.$$

$$\overline{X^{2}} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_{i}^{2} = \frac{1}{2\lambda}$$

$$\widetilde{\lambda} = \frac{1}{2\overline{X^{2}}} = \frac{n}{2\sum_{i=1}^{n} X_{i}^{2}}$$

d) Suppose n = 4, and $x_1 = 0.2$, $x_2 = 0.6$, $x_3 = 1.1$, $x_4 = 1.7$. Find a method of moments estimate of λ .

OR
$$\sum_{i=1}^{n} x_i^2 = 4.5.$$
 $\widetilde{\lambda} = \frac{4}{9} \approx 0.444444.$

e) Find a closed-form expression for $E(X^k)$, $k \ge -1$.

$$E(X^{k}) = \int_{0}^{\infty} x^{k} \cdot \frac{2\sqrt{\lambda}}{\sqrt{\pi}} e^{-\lambda x^{2}} dx \qquad u = \lambda x^{2} \qquad du = 2\lambda x dx$$
$$= \int_{0}^{\infty} \left(\frac{u}{\lambda}\right)^{(k-1)/2} \frac{1}{\sqrt{\pi\lambda}} e^{-u} du = \frac{1}{\lambda^{k/2}} \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} u^{\frac{k+1}{2}-1} e^{-u} du$$
$$= \frac{1}{\lambda^{k/2}} \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{k+1}{2}\right).$$

For example,

$$\begin{split} \mathbf{E}(\mathbf{X}) &= \mathbf{E}(\mathbf{X}^{1}) = \frac{1}{\lambda^{1/2}} \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{1+1}{2}\right) = \frac{1}{\lambda^{1/2}} \frac{1}{\sqrt{\pi}} \Gamma(1) = \frac{1}{\sqrt{\pi\lambda}}.\\ \mathbf{E}(\mathbf{X}^{2}) &= \frac{1}{\lambda^{2/2}} \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{2+1}{2}\right) = \frac{1}{\lambda} \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{3}{2}\right) = \frac{1}{\lambda} \frac{1}{\sqrt{\pi}} \frac{1}{2} \Gamma\left(\frac{1}{2}\right) \\ &= \frac{1}{\lambda} \frac{1}{\sqrt{\pi}} \frac{1}{2} \sqrt{\pi} = \frac{1}{2\lambda}.\\ \mathbf{E}(\mathbf{X}^{3}) &= \frac{1}{\lambda^{3/2}} \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{3+1}{2}\right) = \frac{1}{\lambda^{3/2}} \frac{1}{\sqrt{\pi}} \Gamma(2) = \frac{1}{\sqrt{\pi}} \frac{1}{\lambda^{3/2}}.\\ \mathbf{E}(\mathbf{X}^{4}) &= \frac{1}{\lambda^{4/2}} \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{4+1}{2}\right) = \frac{1}{\lambda^{2}} \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{5}{2}\right) = \frac{1}{\lambda^{2}} \frac{1}{\sqrt{\pi}} \frac{3}{2} \Gamma\left(\frac{3}{2}\right) \\ &= \frac{1}{\lambda^{2}} \frac{1}{\sqrt{\pi}} \frac{3}{2} \frac{1}{2} \Gamma\left(\frac{1}{2}\right) = \frac{1}{\lambda^{2}} \frac{1}{\sqrt{\pi}} \frac{3}{4} \sqrt{\pi} = \frac{3}{4\lambda^{2}}.\\ \mathbf{E}(\mathbf{X}^{5}) &= \frac{1}{\lambda^{5/2}} \frac{1}{\sqrt{\pi}} \Gamma\left(\frac{5+1}{2}\right) = \frac{1}{\lambda^{5/2}} \frac{1}{\sqrt{\pi}} \Gamma(3) = \frac{2}{\sqrt{\pi}} \frac{2}{\sqrt{\pi}} \lambda^{5/2}. \end{split}$$

4. Let $\lambda > 0$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x; \lambda) = \frac{\lambda^2}{2} e^{-\lambda \sqrt{x}}, \qquad x > 0,$$
 zero otherwise.

a) Find the maximum likelihood estimator of λ , $\hat{\lambda}$.

$$L(\lambda) = \prod_{i=1}^{n} \left(\frac{\lambda^2}{2} e^{-\lambda \sqrt{x_i}} \right) = \frac{\lambda^{2n}}{2^n} e^{-\lambda \sum \sqrt{x_i}}.$$

$$\ln L(\lambda) = 2n \cdot \ln \lambda - n \cdot \ln 2 - \lambda \cdot \sum_{i=1}^{n} \sqrt{x_i}.$$

$$\left(\ln L(\lambda)\right)' = \frac{2n}{\lambda} - \sum_{i=1}^{n} \sqrt{x_i} = 0.$$
 $\Rightarrow \quad \hat{\lambda} = \frac{2n}{\sum_{i=1}^{n} \sqrt{X_i}}.$

b) Suppose n = 4, and $x_1 = 0.81$, $x_2 = 1.96$, $x_3 = 0.36$, $x_4 = 0.09$. Find the maximum likelihood estimate of λ , $\hat{\lambda}$.

$$\sum_{i=1}^{n} \sqrt{x_i} = 0.9 + 1.4 + 0.6 + 0.3 = 3.2.$$
$$\hat{\lambda} = \frac{2 \cdot 4}{3.2} = 2.5.$$

c) Find a closed-form expression for $E(X^k)$ for $k \ge -1$.

"Hint" 1:
$$u = \sqrt{x}$$
.
"Hint" 2: $\frac{\lambda^{\alpha}}{\Gamma(\alpha)} u^{\alpha-1} e^{-\lambda u}$ is the p.d.f. of Gamma($\alpha, \theta = \frac{1}{\lambda}$) distribution

$$E(X^{k}) = \int_{0}^{\infty} x^{k} \cdot \frac{\lambda^{2}}{2} e^{-\lambda\sqrt{x}} dx \qquad u = \sqrt{x} \qquad x = u^{2} \qquad dx = 2 u \, du$$
$$= \int_{0}^{\infty} u^{2k} \frac{\lambda^{2}}{2} e^{-\lambda u} 2 u \, du$$
$$= \frac{\Gamma(2k+2)}{\lambda^{2k}} \int_{0}^{\infty} \frac{\lambda^{2k+2}}{\Gamma(2k+2)} u^{(2k+2)-1} e^{-\lambda u} \, du = \frac{\Gamma(2k+2)}{\lambda^{2k}}.$$

d) Find
$$E(X)$$
 and $Var(X)$.

$$E(X) = E(X^{1}) = \frac{\Gamma(4)}{\lambda^{2}} = \frac{3!}{\lambda^{2}} = \frac{6}{\lambda^{2}}.$$

$$E(X^{2}) = \frac{\Gamma(6)}{\lambda^{4}} = \frac{5!}{\lambda^{4}} = \frac{120}{\lambda^{4}}.$$

$$Var(X) = \frac{120}{\lambda^{4}} - \left(\frac{6}{\lambda^{2}}\right)^{2} = \frac{84}{\lambda^{4}}.$$

e) Find a method of moments estimator of λ , $\tilde{\lambda}$.

$$E(X) = \frac{6}{\lambda^2}.$$

$$\overline{X} = \frac{1}{n} \cdot \sum_{i=1}^n X_i = \frac{6}{\tilde{\lambda}^2}.$$

$$\Rightarrow \quad \tilde{\lambda} = \sqrt{\frac{6}{\overline{X}}} = \sqrt{\frac{6 \cdot n}{\sum_{i=1}^n X_i}}.$$

f) Suppose n = 4, and $x_1 = 0.81$, $x_2 = 1.96$, $x_3 = 0.36$, $x_4 = 0.09$. Find a method of moments estimate of λ , $\tilde{\lambda}$.

$$\sum_{i=1}^{n} x_{i} = 3.22. \qquad \overline{x} = 0.805.$$
$$\tilde{\lambda} = \sqrt{\frac{6}{0.805}} \approx 2.73.$$

5. Let $\lambda > 0$ and let X_1, X_2, \dots, X_n be independent random variables, each with the probability density function

$$f(x; \lambda) = \frac{\lambda}{x^{\lambda+1}}, \qquad x > 1.$$

- a) (i) Find the maximum likelihood estimator of λ , $\hat{\lambda}$.
 - (ii) Suppose n = 5, and $x_1 = 1.3$, $x_2 = 1.4$, $x_3 = 2$, $x_4 = 3$, $x_5 = 5$. Find the maximum likelihood estimate of λ .

(i)
$$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda}{x_{i}^{\lambda+1}} = \frac{\lambda^{n}}{\left(\prod_{i=1}^{n} x_{i}\right)^{\lambda+1}}.$$
$$\ln L(\lambda) = n \ln \lambda - (\lambda+1) \cdot \sum_{i=1}^{n} \ln x_{i}.$$
$$\frac{d \ln L(\lambda)}{d \lambda} = \frac{n}{\lambda} - \sum_{i=1}^{n} \ln x_{i} = 0.$$
$$\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} \ln x_{i}}.$$

(ii)
$$x_1 = 1.3$$
, $x_2 = 1.4$, $x_3 = 2$, $x_4 = 3$, $x_5 = 5$. $\sum_{i=1}^{n} \ln x_i = \ln 54.6 \approx 4$.

$$\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} \ln x_i} = \frac{5}{4} = 1.25.$$

- b) (i) Find a method of moments estimator of λ , $\tilde{\lambda}$. (Assume $\lambda > 1$.)
 - (ii) Suppose n = 5, and $x_1 = 1.3$, $x_2 = 1.4$, $x_3 = 2$, $x_4 = 3$, $x_5 = 5$. Find a method of moments estimate of λ .

(i)
$$\mu_{\mathbf{X}} = \mathbf{E}(\mathbf{X}) = \int_{-\infty}^{\infty} x \cdot f_{\mathbf{X}}(x) dx = \int_{1}^{\infty} x \cdot \frac{\lambda}{x^{\lambda+1}} dx = \frac{\lambda}{\lambda-1}.$$
$$\frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{X}_{i} = \overline{\mathbf{X}} = \frac{\widetilde{\lambda}}{\widetilde{\lambda}-1}. \qquad \Rightarrow \qquad \widetilde{\lambda} = \frac{\overline{\mathbf{X}}}{\overline{\mathbf{X}}-1}.$$

(ii)
$$x_1 = 1.3$$
, $x_2 = 1.4$, $x_3 = 2$, $x_4 = 3$, $x_5 = 5$. $\sum_{i=1}^{n} x_i = 12.7$.

$$\overline{x} = 2.54.$$
 $\widetilde{\lambda} = \frac{2.54}{2.54-1} \approx 1.64935.$

6. Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with probability mass function

$$P(X_i = 1) = \frac{\theta}{3+\theta}, \quad P(X_i = 2) = \frac{2}{3+\theta}, \quad P(X_i = 3) = \frac{1}{3+\theta}, \quad \theta > 0.$$

a) Obtain the method of moments estimator $\tilde{\theta}$ of θ .

$$E(X) = 1 \times \frac{\theta}{3+\theta} + 2 \times \frac{2}{3+\theta} + 3 \times \frac{1}{3+\theta} = \frac{\theta+7}{3+\theta}.$$
$$\frac{1}{n} \cdot \sum_{i=1}^{n} x_i = \overline{x} = \frac{\widetilde{\theta}+7}{3+\widetilde{\theta}}.$$
$$3 \overline{x} + \widetilde{\theta} \overline{x} = \widetilde{\theta} + 7.$$
$$\Rightarrow \qquad \widetilde{\theta} = \frac{7-3\overline{x}}{\overline{x}-1}.$$

b) Obtain the maximum likelihood estimator $\hat{\theta}$ of θ .

$$L(\theta) = \frac{1}{(3+\theta)^n} \cdot \theta^{(\# \text{ of } 1's)} \cdot 2^{(\# \text{ of } 2's)} \cdot 1^{(\# \text{ of } 3's)}.$$

$$\ln L(\theta) = -n \ln(3+\theta) + (\# \text{ of } 1's) \ln(\theta) + (\# \text{ of } 2's) \ln(2) + (\# \text{ of } 3's) \ln(1).$$

$$(\ln L(\theta))' = -\frac{n}{3+\theta} + \frac{(\# \text{ of } 1's)}{\theta} = 0 \qquad \qquad \Rightarrow \qquad \hat{\theta} = \frac{3 \cdot (\# \text{ of } 1's)}{n - (\# \text{ of } 1's)}.$$

7. Bert and Ernie find a coin on the sidewalk on Sesame Street. They wish to estimate p, the probability of Heads. Bert got X Heads in N coin tosses (N is fixed, X is random). Ernie got Heads for the first time on the Yth coin toss (Y is random). They decide to combine their information in hope of a better estimate. (Assume independence.)

a) What is the likelihood function
$$L(p) = L(p; X, N, Y)$$
?

X has a Binomial (N, p) distribution. Y has a Geometric (p) distribution.

$$L(p) = {\binom{N}{X}} p^{X} (1-p)^{N-X} \times (1-p)^{Y-1} p = {\binom{N}{X}} p^{X+1} (1-p)^{N-X+Y-1}.$$

b) Obtain the maximum likelihood estimator for *p*.

$$\ln L(p) = \ln {\binom{N}{X}} + (X+1) \ln p + (N-X+Y-1) \ln (1-p).$$

$$\frac{d}{dp} \ln L(p) = \frac{X+1}{p} - \frac{N-X+Y-1}{1-p} = \frac{X+1-Xp-p-Np+Xp-Yp+p}{p(1-p)}$$

$$= \frac{X+1-Np-Yp}{p(1-p)} = 0.$$

$$\Rightarrow \quad \hat{p} = \frac{X+1}{N+Y}.$$

c) Explain intuitively why your estimator makes good sense.

Bert:			N attempts,		X "successes"
Ernie:		Y attempts,		1 "success"	
ĝ	=	X+1	$\frac{1}{Y} =$	total number of "successes"	
		$\overline{N+Y}$		total number of attempts	

8. Let $\theta \in \mathbb{R}$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x; \theta) = \frac{1}{2}e^{-|x-\theta|}, \qquad x \in \mathbb{R}.$$

a) Find a method of moments estimator $\tilde{\theta}$ of θ .

 $f(x; \theta)$ is symmetric about θ .

$$\Rightarrow E(X) = \theta \quad (\text{balancing point}) \qquad \qquad \widetilde{\theta} = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

b) Find the maximum likelihood estimator $\hat{\theta}$ of θ .

$$L(\theta) = \frac{1}{2^{n}} \exp\left\{-\sum_{i=1}^{n} |x_{i} - \theta|\right\}.$$

$$\Rightarrow \quad \text{To maximize } L(\theta), \text{ we need to minimize } \sum_{i=1}^{n} |x_{i} - \theta|.$$

Let y_k denote the k^{th} smallest among x_1, x_2, \dots, x_n . ($y_1 = \min x_i, y_n = \max x_i$.)

If
$$\theta \in (y_k, y_{k+1})$$
, $\frac{d}{d\theta} \sum_{i=1}^n |x_i - \theta| = k - (n-k) = 2k - n$,
 $\frac{d}{d\theta} \sum_{i=1}^n |x_i - \theta| < 0$ if $k < \frac{n}{2}$, $\frac{d}{d\theta} \sum_{i=1}^n |x_i - \theta| > 0$ if $k > \frac{n}{2}$

If *n* is odd, $\hat{\theta} = Y_{\frac{n+1}{2}}$ (the middle value in the data set).

If *n* is even, $\hat{\theta} \in \left[Y_{\frac{n}{2}}, Y_{\frac{n}{2}+1}\right]$ (any value between the middle two).

For example, $\hat{\theta}$ = sample median.

9. A random sample of size n = 16 from $N(\mu, \sigma^2 = 64)$ yielded $\overline{x} = 85$. Construct the following confidence intervals for μ :

$$\overline{x} = 85$$
 $\sigma = 8$ $n = 16$
 σ is known. The confidence interval : $\overline{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

a) 95%.

$$\alpha = 0.05$$
 $\alpha/2 = 0.025.$ $z_{\alpha/2} = 1.96.$
 $85 \pm 1.96 \cdot \frac{8}{\sqrt{16}}$ 85 ± 3.92 (81.08; 88.92)

b) 90%.

$$\alpha = 0.10$$
 $\frac{\alpha}{2} = 0.05.$ $z_{\alpha/2} = 1.645.$
 $85 \pm 1.645 \cdot \frac{8}{\sqrt{16}}$ 85 ± 3.29 (81.71; 88.29)

c) 80%.

$$\alpha = 0.20$$
 $\frac{\alpha_{2}}{2} = 0.10.$ $z_{\alpha_{2}} = 1.28.$
 $85 \pm 1.28 \cdot \frac{8}{\sqrt{16}}$ 85 ± 2.56 (82.44; 87.56)

OR

$$\alpha = 0.20$$
 $\alpha/2 = 0.10.$ $z_{\alpha/2} = 1.282.$
 $85 \pm 1.282 \cdot \frac{8}{\sqrt{16}}$ 85 ± 2.564 (82.436; 87.564)

10. What is the minimum sample size required for estimating μ for $N(\mu, \sigma^2 = 64)$ to within ± 3 with confidence level

$$\varepsilon = 10, \qquad \sigma = 8.$$

$$n = \left(\frac{\frac{z_{\alpha}}{2} \cdot \sigma}{\frac{z}{2}}\right)^2 = \left(\frac{\frac{z_{\alpha}}{2} \cdot 8}{\frac{z}{3}}\right)^2.$$

a) 95%.
$$\alpha = 0.05$$
 $\frac{\alpha}{2} = 0.025$. $z_{\alpha/2} = 1.96$.
 $n = \left(\frac{z_{\alpha/2} \cdot \sigma}{\frac{2}{\epsilon}}\right)^2 = \left(\frac{1.96 \cdot 8}{3}\right)^2 \approx 27.318$. Round up. $n = 28$.

b) 90%.
$$\alpha = 0.10$$
 $\frac{\alpha}{2} = 0.05.$ $z_{\alpha/2} = 1.645.$
 $n = \left(\frac{z_{\alpha/2} \cdot \sigma}{\epsilon}\right)^2 = \left(\frac{1.645 \cdot 8}{3}\right)^2 \approx 19.243.$ Round up. $n = 20.$

c) 80%.
$$\alpha = 0.20$$
 $\frac{\alpha}{2} = 0.10.$ $z_{\alpha/2} = 1.28.$
 $n = \left(\frac{z_{\alpha/2} \cdot \sigma}{\epsilon}\right)^2 = \left(\frac{1.28 \cdot 8}{3}\right)^2 \approx 11.651.$ Round up. $n = 12.$

OR

$$\alpha = 0.20 \qquad \frac{\alpha}{2} = 0.10. \qquad \mathbf{z}_{\frac{\alpha}{2}} = 1.282.$$

$$n = \left(\frac{\mathbf{z}_{\frac{\alpha}{2}} \cdot \mathbf{\sigma}}{\varepsilon}\right)^2 = \left(\frac{1.282 \cdot 8}{3}\right)^2 \approx 11.687. \qquad \text{Round up.} \qquad n = 12.$$

- 11. Suppose the overall (population) standard deviation of the bill amounts at a supermarket is $\sigma = 13.75 .
- a) Find the probability that the sample mean bill amount will be within \$2.00 of the overall mean bill amount for a random sample of 121 customers.

Need P($\mu - 2.00 \le \overline{X} \le \mu + 2.00$) = ?

$$n = 121 - \text{large} \qquad \text{Central Limit Theorem:} \qquad \frac{X - \mu}{5 / \sqrt{n}} = Z.$$

$$P(\mu - 2.00 \le \overline{X} \le \mu + 2.00) = P\left(\frac{(\mu - 2.00) - \mu}{13.75 / \sqrt{121}} \le Z \le \frac{(\mu + 2.00) - \mu}{13.75 / \sqrt{121}}\right)$$

$$= P(-1.60 \le Z \le 1.60) = 0.9452 - 0.0548 = 0.8904.$$

b) What is the minimum sample size required for estimating the overall mean bill amount to within \$2.00 with 95% confidence?

$$\varepsilon = 2.00, \quad \sigma = 13.75, \quad \alpha = 0.05, \quad \frac{\alpha}{2} = 0.025, \quad z_{\alpha/2} = z_{0.035} = 1.96.$$

$$n = \left(\frac{z_{\alpha/2} \cdot \sigma}{\varepsilon}\right)^2 = \left(\frac{1.96 \cdot 13.75}{2.00}\right)^2 = 181.575625. \quad \text{Round up.} \quad n = 182.$$

12. 11. (continued)

The supermarket selected a random sample of 121 customers, which showed the sample mean bill amount of \$78.80.

$$X = $78.80, \sigma = $13.75, n = 121.$$

c) Construct a 95% confidence interval for the overall mean bill amount at this supermarket.

 σ is known. n = 121 - large.

The confidence interval for μ : $\overline{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$. $\alpha = 0.05.$ $\alpha/2 = 0.025.$ $z_{\alpha/2} = z_{0.025} = 1.96.$ $78.80 \pm 1.96 \cdot \frac{13.75}{\sqrt{121}}$ **78.80 \pm 2.45** (76.35; 81.25)

d) Suppose the supermarket puts Alex in charge of computing the confidence interval, and he gets the answer (76.15, 81.45). Alex says that he used a different confidence level, but other than that did everything correctly. Find the confidence level used by Alex.

$$\overline{X} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}} \qquad 81.45 - 78.80 = 78.80 - 76.15 = 2.65.$$

$$2.65 = z_{\alpha/2} \cdot \frac{13.75}{\sqrt{121}} \qquad z_{\alpha/2} = 2.12.$$

$$\alpha/2 = \text{Area to the right of } 2.12 = 0.0170. \qquad \alpha = 2 \cdot 0.0170 = 0.0340$$

Confidence level = $100 \cdot (1 - \alpha)\% = 96.6\%$.