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1.  Let   > 0  and  let  X 1 , X 2 , … , X n  be a random sample from the distribution with 

 probability density function 

       
3

    

 
  

 

 
τ

  
8

 
     14

5ττ; xexxf 
 ,  x > 0. 

 Obtain the maximum likelihood estimator of  , τ̂ . 
 
 
 
2. Let  X 1 , X 2 , … , X n  be a random sample from the distribution with probability 

 density function 

        
 θ 

θ
2 

   2
    

xxf 
   0 < x <    > 0. 

 

a) Obtain the method of moments estimator of , θ
~

. 
 

b) Is θ
~

 an unbiased estimator for   ?   c) Find  Var ( θ
~

 ). 
 
 
 

3. Let  X 1 , X 2 , … , X n  be a random sample of size  n  from the distribution with 

 probability density function 
 

     f ( x ;  )  =  
2 

  λ
  

 2 λ xe


,     x > 0,           > 0. 

 

a) Obtain the maximum likelihood estimator of  , λ̂ . 
 

b) Suppose   n = 4,     and     x 1 = 0.2,    x 2 = 0.6,    x 3 = 1.1,    x 4 = 1.7. 

 Find the maximum likelihood estimate of  . 
 

c) Obtain the method of moments estimator of  , λ
~

. 
 

d) Suppose   n = 4,     and     x 1 = 0.2,    x 2 = 0.6,    x 3 = 1.1,    x 4 = 1.7. 

 Find a method of moments estimate of  . 
 

e) Find a closed-form expression for  E ( X 
k

 ),   k > – 1. 



4. Let   > 0  and  let  X 1 , X 2 , … , X n  be a random sample from the distribution  

 with probability density function 
 

  f ( x ;  )  =   

 
   

2
λ 

2

λ xe  ,  x > 0,  zero  otherwise. 

 

a) Find the maximum likelihood estimator of  , λ̂ . 
 

b) Suppose    n = 4,    and    x 1 = 0.81,   x 2 = 1.96,   x 3 = 0.36,   x 4 = 0.09. 

 Find the maximum likelihood estimate of  , λ̂ . 
 

c) Find a closed-form expression for  E ( X 
k

 )  for  k > – 1. 
 

 “Hint” 1:       u =  x . 
 

 “Hint” 2:       
 

 
  

 

   

1 λ
  

α
αλ

α
u

u e



  is the  p.d.f.  of  Gamma ( ,   = 

1

λ
 )  distribution 

 

d) Find  E ( X )  and  Var ( X ). 
 

e) Find a method of moments estimator of  , λ . 
 

f) Suppose    n = 4,    and    x 1 = 0.81,   x 2 = 1.96,   x 3 = 0.36,   x 4 = 0.09. 

 Find a method of moments estimate of  , λ . 
 
 
 
 
5. Let   > 0  and let  X 1 , X 2 , … , X n  be independent random variables, each with 

 the probability density function 

       f ( x ;  ) = 
1λ 

λ
x

,  x > 1. 

 

a) (i) Find the maximum likelihood estimator of  , λ̂ . 
 
 (ii) Suppose  n = 5,   and         x 1 = 1.3,      x 2 = 1.4,      x 3 = 2,      x 4 = 3,      x 5 = 5. 

  Find the maximum likelihood estimate of  . 



b) (i) Find a method of moments estimator of  , λ
~

.   ( Assume   > 1. ) 
 
 (ii) Suppose  n = 5,   and         x 1 = 1.3,      x 2 = 1.4,      x 3 = 2,      x 4 = 3,      x 5 = 5. 

  Find a method of moments estimate of  . 
 
 
 
6. Let  X 1 , X 2 , … , X n  be a random sample from the distribution with probability 

 mass function 
 

 P ( X i = 1 ) = 
θ

θ
3

,     P ( X i = 2 ) = 
θ3

2


,     P ( X i = 3 ) = 

θ3

1


,   > 0. 

 

a) Obtain the method of moments estimator θ
~

 of . 
 

b) Obtain the maximum likelihood estimator θ̂  of . 
 
 
 
7. Bert and Ernie find a coin on the sidewalk on Sesame Street.  They wish to estimate p, 

 the probability of Heads.  Bert got X Heads in N coin tosses ( N is fixed, X is random ). 

 Ernie got Heads for the first time on the Yth coin toss ( Y is random ).  They decide to 

 combine their information in hope of a better estimate.  (Assume independence.) 
 
a) What is the likelihood function  L ( p ) = L ( p ; X, N, Y ) ? 
 

b) Obtain the maximum likelihood estimator for p. 
 
c) Explain intuitively why your estimator makes good sense. 
 
 
 
8. Let      and  let  X 1 , X 2 , … , X n  be a random sample from the distribution with 

 probability density function 
 

   f ( x ;  )  =  
    θ

 
2

1   x
e ,  x  . 

 

a) Find a method of moments estimator  θ
~

  of  . 
 

b) Find the maximum likelihood estimator  θ̂   of  . 



9. A random sample of size  n = 16  from  N ( ,  
2 = 64 )  yielded  x  = 85. 

 Construct the following confidence intervals for  : 
 
 a) 95%.   b) 90%.   c) 80%. 
 
 
 

10. What is the minimum sample size required for estimating    for  N ( ,  
2 = 64 ) 

 to within   3  with confidence level 
 
 a) 95%.   b) 90%.   c) 80%. 
 
 
 
 
11. Suppose the overall (population) standard deviation of the bill amounts at a supermarket 

 is   = $13.75. 
 
a) Find the probability that the sample mean bill amount will be within $2.00 of the overall 

 mean bill amount for a random sample of 121 customers. 
 

b) What is the minimum sample size required for estimating the overall mean bill amount 

 to within $2.00 with 95% confidence? 
 

12. 11. (continued) 

 The supermarket selected a random sample of 121 customers, which showed the sample 

 mean bill amount of $78.80. 
 
c) Construct a 95% confidence interval for the overall mean bill amount at this supermarket. 
 

d) Suppose the supermarket puts Alex in charge of computing the confidence interval, and 

 he gets the answer ( 76.15 , 81.45 ).  Alex says that he used a different confidence level, 

 but other than that did everything correctly.  Find the confidence level used by Alex. 
 



 
 
 

Answers: 
 
 
 
 
 

1. Let   > 0  and  let  X 1 , X 2 , … , X n  be a random sample from the distribution with 

 probability density function 

       
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     14

5ττ; xexxf 
 ,  x > 0. 

 Obtain the maximum likelihood estimator of  , τ̂ . 
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2. Let  X 1 , X 2 , … , X n  be a random sample from the distribution with probability 

 density function 
 

     
 θ 

θ
2 

   2
    

xxf 
   0 < x <    > 0. 

 

a) Obtain the method of moments estimator of , θ
~

. 
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b)* Is θ
~

 an unbiased estimator for   ? 
 
 

 E ( θ
~

)  =  E ( 3 X )  =  3 E ( X )  =  3   =  3 
3

θ
  =  . 

 

  θ
~

 an unbiased estimator for  . 
 
 
 

c)* Find  Var ( θ
~

 ). 
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6

       
22

        
2

0
2

22
 

 

  θ

 θ  θ 

θ














 



dxxxdxxfx . 

 

  
2  =  Var ( X )  =  

96

22   θθ
   =  

18

2 θ
. 

 

 Var ( θ
~

)  =  Var ( 3 X )  =  9 Var ( X )  =  
n

2 σ
9    =  

n 18
9

2 θ   =  
n 2

2 θ
. 



3. Let  X 1 , X 2 , … , X n  be a random sample of size  n  from the distribution with 

 probability density function 
 

     f ( x ;  )  =  
2 

  λ
  

 2 λ xe


,     x > 0,           > 0. 

 

a) Obtain the maximum likelihood estimator of  , λ̂ . 
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b) Suppose   n = 4,     and     x 1 = 0.2,    x 2 = 0.6,    x 3 = 1.1,    x 4 = 1.7. 

 Find the maximum likelihood estimate of  . 
 
 
 
 x 1 = 0.2,    x 2 = 0.6,    x 3 = 1.1,    x 4 = 1.7. 
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c) Obtain the method of moments estimator of  , λ
~

. 
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d) Suppose   n = 4,     and     x 1 = 0.2,    x 2 = 0.6,    x 3 = 1.1,    x 4 = 1.7. 

 Find a method of moments estimate of  . 
 
 

 x 1 = 0.2,    x 2 = 0.6,    x 3 = 1.1,    x 4 = 1.7. 

 

 x  = 0.9.   λ
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e) Find a closed-form expression for  E ( X 
k

 ),   k > – 1. 
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4. Let   > 0  and  let  X 1 , X 2 , … , X n  be a random sample from the distribution  

 with probability density function 
 

  f ( x ;  )  =   

 
   

2
λ 

2

λ xe  ,  x > 0,  zero  otherwise. 

 

a) Find the maximum likelihood estimator of  , λ̂ . 
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b) Suppose    n = 4,    and    x 1 = 0.81,   x 2 = 1.96,   x 3 = 0.36,   x 4 = 0.09. 

 Find the maximum likelihood estimate of  , λ̂ . 
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c) Find a closed-form expression for  E ( X 
k

 )  for  k > – 1. 
 
 “Hint” 1:       u =  x . 
 

 “Hint” 2:       
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d) Find  E ( X )  and  Var ( X ). 
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e) Find a method of moments estimator of  , λ . 
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f) Suppose    n = 4,    and    x 1 = 0.81,   x 2 = 1.96,   x 3 = 0.36,   x 4 = 0.09. 

 Find a method of moments estimate of  , λ . 
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5. Let   > 0  and let  X 1 , X 2 , … , X n  be independent random variables, each with 

 the probability density function 

       f ( x ;  ) = 
1λ 

λ
x

,  x > 1. 

 
 

a) (i) Find the maximum likelihood estimator of  , λ̂ . 
 
 (ii) Suppose  n = 5,   and         x 1 = 1.3,      x 2 = 1.4,      x 3 = 2,      x 4 = 3,      x 5 = 5. 

  Find the maximum likelihood estimate of  . 
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(ii) x 1 = 1.3,      x 2 = 1.4,      x 3 = 2,      x 4 = 3,      x 5 = 5.     
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b) (i) Find a method of moments estimator of  , λ
~

.   ( Assume   > 1. ) 
 
 (ii) Suppose  n = 5,   and         x 1 = 1.3,      x 2 = 1.4,      x 3 = 2,      x 4 = 3,      x 5 = 5. 

  Find a method of moments estimate of  . 
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6. Let  X 1 , X 2 , … , X n  be a random sample from the distribution with probability 

 mass function 
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b) Obtain the maximum likelihood estimator θ̂  of . 
 
 
 

 L (  ) = 
 

              

 
  

s'3 of #s'2 of #s'1 of # 12θ
θ3

1 
 n

. 

 

 ln L (  ) =                          1s'3 of #2s'2 of #θs'1 of #θ3 lnlnlnln           n . 
 

 ( ln L (  ) )' = 
 

θ

s'1 of #

θ3

  





n
 = 0   θ̂  = 

 
   

  

s'1 of #

s'1 of #3




n
. 

 



7. Bert and Ernie find a coin on the sidewalk on Sesame Street.  They wish to estimate p, 

 the probability of Heads.  Bert got X Heads in N coin tosses ( N is fixed, X is random ). 

 Ernie got Heads for the first time on the Yth coin toss ( Y is random ).  They decide to 

 combine their information in hope of a better estimate.  (Assume independence.) 
 

a) What is the likelihood function  L ( p ) = L ( p ; X, N, Y ) ? 
 
 

 X  has a Binomial ( N, p ) distribution.     Y  has a Geometric ( p ) distribution. 
 

 L ( p )  =      pppp  1    1  
X

N 1YXNX    
    

 







  =    1YXN1X   

  1  
X

N  







pp . 

 
 
 
b) Obtain the maximum likelihood estimator for p. 
 
 

 ln L ( p )  =  ln 







X

N
  +  ( X + 1 ) ln p  +  ( N – X + Y – 1 ) ln ( 1 – p ). 

 

 
dp
d

 ln L ( p )  =  
p

1X 
  –  

p


1

1YXN
  =     

    

1 

YXNX1X

pp
pppppp




 

   =     

  

1 

YN1X

pp
pp




  =  0. 

 

  p̂   =  
YN

1X




. 

 
 
 
c) Explain intuitively why your estimator makes good sense. 
 
 

 Bert:  N attempts,  X "successes" 

 Ernie:  Y attempts,  1 "success" 
 

 p̂   =  
YN

1X




  =  
attempts ofnumber  total

successes"" ofnumber  total
. 



8. Let      and  let  X 1 , X 2 , … , X n  be a random sample from the distribution with 

 probability density function 
 

   f ( x ;  )  =  
    θ

 
2

1   x
e ,  x  . 

 

a) Find a method of moments estimator  θ
~

  of  . 
 

 f ( x ;  ) is symmetric about . 

  E ( X ) =  ( balancing point )  θ
~

  =  



n

i
in 1

   
 

X
1

    X . 

 
 

b) Find the maximum likelihood estimator  θ̂   of  . 
 

 L (  ) = 















 

1

   θ
 

exp
2

1 n

i
in

x . 

  To maximize  L (  ),  we need to minimize 



n

i
ix

1

   θ
 

. 

 

 Let  y k  denote the k 
th smallest among  x 1 , x 2 , … , x n . 

  ( y 1 = min x i ,   y n = max x i . ) 
 

 If    ( y k , y k + 1 ),  
θ d

d 



n

i
ix

1

   θ
 

  =  k – ( n – k )  =  2 k – n, 

 

  
θ d

d 



n

i
ix

1

   θ
 

 < 0   if   k < 
2

n
,  

θ d
d 




n

i
ix

1

   θ
 

 > 0   if   k > 
2

n
. 

 

 If  n  is odd,   

2

1Y    θ̂  n    ( the middle value in the data set ). 

 If  n  is even,   ][  
1

22

Y,Y     θ̂


 nn    ( any value between the middle two ). 

 For example,   θ̂   =  sample median. 



9. A random sample of size  n = 16  from  N ( ,  
2 = 64 )  yielded  x  = 85. 

 Construct the following confidence intervals for  : 
 
 

 x  = 85    = 8   n = 16 

  is known.   The confidence interval :  
n



2

zX . 

 
 
a) 95%. 
 
 

  = 0.05           2  = 0.025.          
2

z  = 1.96. 

 
16

8
96.185

 

    85  3.92  ( 81.08 ; 88.92 ) 

 
 
b) 90%. 
 
 

  = 0.10           2  = 0.05.          
2

z  = 1.645. 

 
16

8
645.185

 

    85  3.29  ( 81.71 ; 88.29 ) 

 
 
c) 80%. 
 
 

  = 0.20           2  = 0.10.          
2

z  = 1.28. 

 
16

8
28.185

 

    85  2.56  ( 82.44 ; 87.56 ) 

 
OR 

 

  = 0.20           2  = 0.10.          
2

z  = 1.282. 

 
16

8
282.185

 

    85  2.564  ( 82.436 ; 87.564 ) 



10. What is the minimum sample size required for estimating    for  N ( ,  
2 = 64 ) 

 to within   3  with confidence level 
 
 

  = 10,           = 8. 

 

2

2

2

2

  

3

8α
  

α
    

z

ε

σz




































n . 

 
 

a) 95%.    = 0.05           2  = 0.025.          
2

z  = 1.96. 

 
2

2

2
 

 

3

81.96α

ε

σz




























n   27.318.  Round up.  n = 28. 

 
 

b) 90%.    = 0.10           2  = 0.05.          
2

z  = 1.645. 

 
2

2

2
 

 

3

81.645α

ε

σz


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

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



















n   19.243.  Round up.  n = 20. 

 
 

c) 80%.    = 0.20           2  = 0.10.          
2

z  = 1.28. 

 
2

2

2
 

 

3

81.28α

ε

σz






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



















n   11.651.  Round up.  n = 12. 

 
OR 

 

     = 0.20           2  = 0.10.          
2

z  = 1.282. 

 
2

2

2
 

 

3

81.282α

ε

σz




























n   11.687.  Round up.  n = 12. 



11. Suppose the overall (population) standard deviation of the bill amounts at a supermarket 

 is   = $13.75. 
 

a) Find the probability that the sample mean bill amount will be within $2.00 of the overall 

 mean bill amount for a random sample of 121 customers. 
 
 
 

 Need  P (   2.00  X    + 2.00 ) = ? 
 

 n = 121    large   Central Limit Theorem:  .

n

Z
X







 

 P (   2.00  X    + 2.00 )  =  
    

 

  

  

2.00
P Z

13.75 13.75
121 121

(μ ) μ (μ 2.00 ) μ
 

      
 


 

 
   =  P (  1.60  Z  1.60 )  =  0.9452 – 0.0548  =  0.8904. 
 
 
 
 
 
b) What is the minimum sample size required for estimating the overall mean bill amount 

 to within $2.00 with 95% confidence? 
 
 
 

  = 2.00,           = 13.75,           = 0.05,          2
  = 0.025,          z

2
 = z 0.035 = 1.96. 

 
2

2 21 96 13.75

2.00

z σ

ε
.n            

 
 = 181.575625.  Round up. n = 182. 

 



12. 11. (continued) 

 The supermarket selected a random sample of 121 customers, which showed the sample 

 mean bill amount of $78.80. 
 
 

 X  = $78.80,   = $13.75,  n = 121. 
 
 
c) Construct a 95% confidence interval for the overall mean bill amount at this supermarket. 
 
 
 

   is known.  n = 121  –  large. 
 

 The confidence interval for   :  
n 

σ

2
αzX  . 

  = 0.05.  2
  = 0.025.   z

2
 = z 0.025 = 1.96. 

 
 

13.75
78.80 1.96

121
    78.80  2.45  ( 76.35 ; 81.25 ) 

 
 
 
 
 
d) Suppose the supermarket puts Alex in charge of computing the confidence interval, and 

 he gets the answer ( 76.15 , 81.45 ).  Alex says that he used a different confidence level, 

 but other than that did everything correctly.  Find the confidence level used by Alex. 
 
 
 

 
n 

σ

2
αzX     81.45  78.80 = 78.80  76.15 = 2.65. 

 
 2

13.75
2.65 zα 121

     z
2

 = 2.12. 

 

 2
   =  Area to the right of 2.12  =  0.0170.     =  2  0.0170  =  0.0340. 

 

 Confidence level = 100  (1  )% = 96.6% . 
 


