Poisson Distribution:

X = the number of occurrences of a particular event in an interval of time or space.

\[P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, 3, \ldots. \]

E(X) = \lambda, \quad \text{Var}(X) = \lambda.

Table III (pp. 580 – 582) gives \(P(X \leq x) \)

1. Traffic accidents at a particular intersection follow Poisson distribution with an average rate of 1.4 per week.

a) What is the probability that the next week is accident-free?

1 week \(\Rightarrow \lambda = 1.4. \)

\[P(X = 0) = \frac{1.4^0 e^{-1.4}}{0!} \approx 0.2466. \]

b) What is the probability that there will be exactly 3 accidents next week?

1 week \(\Rightarrow \lambda = 1.4. \)

\[P(X = 3) = \frac{1.4^3 e^{-1.4}}{3!} \approx 0.1128. \]

c) What is the probability that there will be at most 2 accidents next week?

1 week \(\Rightarrow \lambda = 1.4. \)

\[P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) \]
\[= \frac{1.4^0 e^{-1.4}}{0!} + \frac{1.4^1 e^{-1.4}}{1!} + \frac{1.4^2 e^{-1.4}}{2!} \]
\[\approx 0.2466 + 0.3452 + 0.2417 = 0.8335. \]
d) What is the probability that there will be at least 2 accidents during the next two weeks?

2 weeks \(\Rightarrow \lambda = 2.8. \)

\[P(X \geq 2) = 1 - \left[P(X = 0) + P(X = 1) \right] = 1 - \left[\frac{2.8^0 \cdot e^{-2.8}}{0!} + \frac{2.8^1 \cdot e^{-2.8}}{1!} \right] \]

\[\approx 1 - [0.0608 + 0.1703] = 0.7689. \]

e) What is the probability that there will be exactly 5 accidents during the next four weeks?

4 weeks \(\Rightarrow \lambda = 5.6. \)

\[P(X = 5) = \frac{5.6^5 \cdot e^{-5.6}}{5!} \approx 0.1697. \]

f) What is the probability that there will be exactly 2 accidents tomorrow?

1 day \(\Rightarrow \lambda = 0.2. \)

\[P(X = 2) = \frac{0.2^2 \cdot e^{-0.2}}{2!} \approx 0.0164. \]

g) What is the probability that the next accident will not occur for three days?

3 days \(\Rightarrow \lambda = 0.6. \)

\[P(X = 0) = \frac{0.6^0 \cdot e^{-0.6}}{0!} \approx 0.5488. \]

h) What is the probability that there will be exactly three accident-free weeks during the next eight weeks?

\begin{align*}
\text{“Success”} & \quad = \text{an accident-free week} \\
1 \text{ week} \ & \Rightarrow \lambda = 1.4. \quad \quad \quad \quad p = P(\text{“Success”}) = P(X = 0) = \frac{1.4^0 \cdot e^{-1.4}}{0!} \approx 0.2466. \\
\end{align*}

\[P(\text{exactly 3 accident-free weeks in 8 weeks}) = \binom{8}{3} \cdot 0.2466^3 \cdot 0.7534^5 \approx 0.20384. \]

(Binomial distribution)
i) What is the probability that there will be exactly five accident-free days during the next week?

“Success” = an accident-free day

\[1 \text{ day} \Rightarrow \lambda = 0.2. \quad p = P(\text{“Success”}) = P(X = 0) = \frac{0.2^0 \cdot e^{-0.2}}{0!} \approx 0.81873. \]

\[P(\text{exactly 5 accident-free days in 7 days}) = 7C_5 \cdot 0.81873^5 \cdot 0.18127^2 \approx 0.25385. \text{ (Binomial distribution)} \]

When \(n \) is large (\(n \geq 20 \)) and \(p \) is small (\(p \leq 0.05 \)) and \(n \cdot p \leq 5 \), Binomial probabilities can be approximated by Poisson probabilities. For this, set \(\lambda = n \cdot p \).

2. Suppose the defective rate at a particular factory is 1%. Suppose 50 parts were selected from the daily output of parts. Let \(X \) denote the number of defective parts in the sample.

a) Find the probability that the sample contains exactly 2 defective parts.

\[P(X = 2) = \binom{50}{2} \cdot (0.01)^2 \cdot (0.99)^{48} \approx 0.075618. \]

b) Use Poisson approximation to find the probability that the sample contains exactly 2 defective parts.

\[\lambda = n \cdot p = 0.5. \]

\[P(X = 2) = \frac{0.5^2 \cdot e^{-0.5}}{2!} \approx 0.075816. \]
c) Find the probability that the sample contains at most 1 defective part.

\[
P(X \leq 1) = P(X = 0) + P(X = 1)
\]

\[
= \binom{50}{0} \cdot (0.01)^0 \cdot (0.99)^{50} + \binom{50}{1} \cdot (0.01)^1 \cdot (0.99)^{49} \approx 0.910565.
\]

d) Use Poisson approximation to find the probability that the sample contains at most 1 defective part.

\[
P(X \leq 1) = P(X = 0) + P(X = 1)
\]

\[
= \frac{0.5^0 \cdot e^{-0.5}}{0!} + \frac{0.5^1 \cdot e^{-0.5}}{1!} \approx 0.909796.
\]