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4. Let  X 1 , X 2 , … , X n  be a random  
 sample of size  n  from the distribution 
 with probability density function 

      f ( x ; θ ) = 
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 0 < θ < ∞.  
 

Recall: Maximum likelihood estimator of θ is  ∑⋅−=
=

n

i in 1
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Method of moments estimator of θ is  1
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Def    An estimator θ̂  is said to be  unbiased for θ  if  E( θ̂ ) = θ  for all θ. 
 
 
d) Is θ̂  unbiased for θ?  That is, does E(θ̂ ) equal θ? 
 
 
 
 
 
 
 
 
 
 
Jensen’s Inequality: 
 
 If  g  is convex on an open interval  I  and  X  is a random variable whose support 
 is contained in  I  and has finite expectation, then 
 
   E [ g ( X ) ]  ≥  g [ E ( X ) ]. 
 
 If  g  is strictly convex then the inequality is strict, unless  X  is a constant random 
 variable. 



e) Is θ~  unbiased for θ?  That is, does E( θ~ ) equal θ? 
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6. Let  X 1 , X 2 , … , X n  be a random sample of size  n  from a population 

 with mean  µ  and variance  σ 
2.  Show that the sample mean  X   and the 

 sample variance  S 
2  are unbiased for  µ  and  σ 

2, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 For an estimator θ̂  of θ, define the Mean Squared Error of θ̂  by 

  MSE ( θ̂  )  =  E [ ( θ̂  – θ ) 
2

 ]. 
 

E [ ( θ̂  – θ ) 
2

 ]  =  ( E ( θ̂  ) – θ ) 
2 + Var ( θ̂  )  =  ( bias ( θ̂  ) ) 

2 + Var ( θ̂  ). 


