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4. Let  X 1 , X 2 , … , X n  be a random  
 sample of size  n  from the distribution 
 with probability density function 
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Def    An estimator θ̂  is said to be  unbiased for θ  if  E( θ̂ ) = θ  for all θ. 
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d) Is θ̂  unbiased for θ?  That is, does E(θ̂ ) equal θ? 
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 Integration by parts: 
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 Therefore, 

   ( ) ( ) ( )∑∑
==

θ−−=−= ⋅⋅
n

i

n

i
i

nn 11

     1     Xln  E 1      θ̂  E    =  θ, 

 that is, θ̂  is an unbiased estimator for θ. 
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Jensen’s Inequality: 
 
 If  g  is convex on an open interval  I  and  X  is a random variable whose support 
 is contained in  I  and has finite expectation, then 
 
   E [ g ( X ) ]  ≥  g [ E ( X ) ]. 
 
 If  g  is strictly convex then the inequality is strict, unless  X  is a constant random 
 variable. 
 
 

 ⇒ E ( X 2 )  ≥  [ E ( X ) ] 2  ⇔ Var ( X ) ≥ 0 
 

 ⇒ E ( e t X )  ≥  e t E ( X )  ⇒ M X ( t )  ≥  e t µ 
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 ⇒ E [ X 3 ]  ≥  [ E ( X ) ] 3  for a non-negative random variable  X 
 
 

 ⇒ E [ ln X ]  ≤  ln E ( X )  for a positive random variable  X 
 

 ⇒ ( ) ( )     XE      XE    ≤   for a non-negative random variable  X 
 

=   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   =   = 
 
 

e) Is θ~  unbiased for θ?  That is, does E( θ~ ) equal θ? 
 
 

 Since  g ( x ) = 111
−

− =
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x ,  0< x < 1,  is strictly convex,  and X  is not a constant  

 random variable, by Jensen’s Inequality, 
 
  E ( θ~ ) = E ( g ( X ) ) > g ( E ( X ) ) = θ. 

 θ~   is NOT an unbiased estimator for  θ. 



6. Let  X 1 , X 2 , … , X n  be a random sample of size  n  from a population 

 with mean  µ  and variance  σ 
2.  Show that the sample mean  X   and the 

 sample variance  S 
2  are unbiased for  µ  and  σ 

2, respectively. 
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 Var ( X 1 + X 2 + … + X n ) = n ⋅ σ 2  ⇒  Var ( X ) = σ 
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 For an estimator θ̂  of θ, define the Mean Squared Error of θ̂  by 

  MSE ( θ̂  )  =  E [ ( θ̂  – θ ) 
2

 ]. 
 

E [ ( θ̂  – θ ) 
2

 ]  =  ( E ( θ̂  ) – θ ) 
2 + Var ( θ̂  )  =  ( bias ( θ̂  ) ) 

2 + Var ( θ̂  ). 



7. Let  X 1 , X 2 , … , X n  be a random sample of size  n  from a distribution with  
 probability density function 
 

  ( ) ( )
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a) Obtain the method of moments estimator of  θ, θ~ . 
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    X θ~=   ⇒  θ~  =  3 X . 

 
 
 
 
b) Is θ~  an unbiased estimator for  θ ?  Justify your answer. 
 
 

 E ( θ~ )  =  E ( 3 X )  =  3 E ( X )  =  3 µ  =  3 
3
θ   =  θ. 

 
 ⇒ θ~  an unbiased estimator for  θ. 
 
 
 
 
c) Find  Var ( θ~  ). 
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8. Let  X 1 , X 2  be a random sample of size  n = 2  from a distribution with probability 

 density function 
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 Find the maximum likelihood estimator  θ̂  of  θ. 
 
 
 
 

 L ( θ )  =  
2

1
2

1 2 1   θθ xx ++ ⋅   =  
( )

4
1 21

2
21   

 
      θθ xxxx +++  

 

 L ( θ )  is a parabola with vertex at  
a
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 Case 1:  a = x 1 x 2 > 0.  Parabola has its “antlers” up. 
 
      ⇒ The vertex is the minimum. 
 
 

  Subcase 1: x 1 > 0,   x 2 > 0.  Vertex = 
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   Maximum of  L ( θ )  on  – 1 < θ < 1  is at  θ̂   =  1. 
 
 

  Subcase 2: x 1 < 0,   x 2 < 0.  Vertex = 
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   Maximum of  L ( θ )  on  – 1 < θ < 1  is at  θ̂   =  – 1. 
 
 
 
 Case 2:  a = x 1 x 2 < 0.  Parabola has its “antlers” down. 
 
      ⇒ The vertex is the maximum. 
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   Maximum of  L ( θ )  on  – 1 < θ < 1  is at  θ̂   =  1. 
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   Maximum of  L ( θ )  on  – 1 < θ < 1  is at  θ̂   =  – 1. 
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Pink  θ̂   =  1. 
 
Purple  θ̂   =  – 1. 
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9. Let  X 1 , X 2 , … , X n  be a random sample from the distribution with probability 
 density function 
 

  ( )
4   3 θ   4  θ xexxf −=   x > 0  θ > 0. 

 
a) Obtain the maximum likelihood estimator of  θ, θ̂ . 
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b) Find  E ( X 

k ),   k > – 4. 
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c) Find the method of moments estimator of  θ, θ~ . 
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