STAT 400

Discussion 11

1.	A random sample of size $n = 9$ from a normal N(μ , σ^2) distribution is obtained:						:			
	4.4	3.7	5.1	4.3	4.7	3.7	3.5	4.6	4.7	
a)	Compute the sample mean \overline{x} and the sample standard deviation s.									
b)	Construct a 95% (two-sided) confidence interval for the overall (population) mean.									
c)	Construct a 90% one-sided confidence interval for μ that provides an upper bound for μ .									
d)	Construct a 95% one-sided confidence interval for μ that provides a lower bound for μ .									
e)	Construct a 95% (two-sided) confidence interval for the overall standard deviation.									
f)	Construct a 90% one-sided confidence interval for σ that provides an upper bound for σ							or σ		
g)	Constru	ct a 95%	one-side	d confide	nce inter	val for σ	that prov	ides a lov	ver bound fo	rσ.
2.	An exan large fle	nination eet resulte	of the rec	cords for a sample m	a random ean opera	sample o	f 16 moto of 26.33	or vehicle cents per	s in a mile and	

- the sample standard deviation of 2.80 cents per mile. (Assume that operating costs are approximately normally distributed.)
- a) Construct a 95% confidence interval for the mean operating cost.
- b) Construct a 90% confidence interval for the variance of the operating costs.

- **3.** Suppose the time spent on a particular STAT 400 homework follows a normal distribution with an overall standard deviation of 28 minutes and an unknown mean.
- a) Suppose a random sample of 49 students is obtained. Find the probability that the average time spent on the homework for students in the sample is within 5 minutes of the overall mean.
- A sample of 49 students has a sample mean of 234 minutes spent on the homework.
 Construct a 90% confidence interval for the overall mean time spent on the homework.
- c) What is the minimum sample size required if we want to estimate the overall mean time spent on the homework to within 5 minutes with 90% confidence?
- **4.** An economist states that 10% of Springfield's labor force is unemployed. A random sample of 400 people in the labor force is obtained, of whom 28 are unemployed.
- a) Construct a 95% confidence interval for the unemployment rate in Springfield.
- b) What is the minimum sample size required in order to estimate the unemployment rate in Springfield to within 2% with 95% confidence? (Use the economist's guess.)
- c) What is the minimum sample size required in order to estimate the unemployment rate in Springfield to within 2% with 95% confidence? (Assume no information is available.)
- 5. The proportion of defective items is not supposed to be over 15%. A buyer wants to test whether the proportion of defectives exceeds the allowable limit. The buyer takes a random sample of 100 items and finds that 19 are defective.
- a) Construct a 95% confidence interval for the overall proportion of defective items.
- b) What is the minimum sample size required in order to estimate the overall proportion of defective items to within 3% with 95% confidence? (Assume that the overall proportion of defective items is at most 0.20.)

6. A coffee machine is regulated so that the amount of coffee dispensed is normally distributed. A random sample of 17 cups is given below:

8.15	7.93	8.04	7.80	8.02	7.92
8.18	7.65	7.73	8.15	7.68	7.85
7.97	7.70	7.75	7.87	8.08	

a) Compute the sample mean and the sample standard deviation.

"Hint":	EXCEL	=AVERAGE() =STDEV()	=SUM(…) =VAR(…)
OR	R	> x = c()	
		> mean(x)	> sum(x)
		> sd(x)	> var(x)

b) Construct a 90% confidence interval for the overall average amount of coffee dispensed by the machine.

7. 7.1-10 6.2-12

A leakage test was conducted to determine the effectiveness of a seal designed To keep the inside of a plug airtight. An air needle was inserted into the plug, and the plug and needle were placed under water. The pressure was then increased until leakage was observed. Let X equal the pressure in pounds per square inch. Assume that X follows a normal distribution. The following 10 observations of X were recorded:

- 3.1 3.3 4.5 2.8 3.5 3.5 3.7 4.2 3.9 3.3
- a) Find a point estimate of μ using the observations.
- b) Find a point estimate of σ using the observations.
- c) Find a 95% confidence upper bound for μ .
- **8.** 7. continued
- d) Construct a 95% (two-sided) confidence interval for σ .
- e) Find a 95% confidence upper bound for σ .

- **9.** Analysis of the venom of seven 8-day-old worker bees yielded the sample mean histamine content (nanograms) of 640, with sample standard deviation of 200. Construct a 90% confidence interval for average histamine content for all worker bees of this age. (Assume that the histamine content is approximately normally distributed.)
- **10.** Suppose the IQs of students at Anytown State University are normally distributed with standard deviation 15 and unknown mean.
- a) Suppose a random sample of 64 students is obtained. Find the probability that the average IQ of the students in the sample will be within 3 points of the overall mean.
- A sample of 64 students had a sample mean IQ of 115. Construct a 95% confidence interval for the overall mean IQ of students at Anytown State University.
- c) What is the minimum sample size required if we want to estimate the overall mean IQ of students at Anytown State University to within 3 points with 95% confidence?
- d) Suppose that only 20% of the students at Anytown State University have the IQ above 130. Find the overall average IQ of the students.

"Hint": From now on, you have μ .

- e) Find the probability that the sample average IQ will be 115 or higher for a random sample of 64 students.
- f) Only students in the top 33% are allowed to join the science club. What is the minimum IQ required to be able to join the science club?
- g) What proportion of the students have IQ of 127 or above?
- h) Find the probability that exactly 13 out of 64 randomly and independently selected students have IQ of 127 or above.

- 11. In a highly publicized study, doctors claimed that aspirin seems to help reduce heart attacks rate. Suppose a group of 400 men from a particular age group took an aspirin tablet three times per week. After three years, 56 of them had had heart attacks. Let p denote the overall proportion of men (in this age group) who take aspirin that have heart attacks in a 3-year period.
- a) Construct a 90% confidence interval for *p*.
- b) Construct a 95% confidence interval for *p*.
- c) Find the 99% confidence upper bound for p.
- 12.* (0) Let X have a $\chi^2(r)$ distribution. If k > -r/2, prove (show) that $E(X^k)$ exists and it is given by

$$E(X^{k}) = \frac{2^{k} \Gamma\left(\frac{r}{2} + k\right)}{\Gamma\left(\frac{r}{2}\right)}.$$

6.4-14 (a),(b) 6.1-14 (a),(b)

Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from a $N(\mu, \sigma^2)$ distribution.

(a) Show that an unbiased estimator of σ is c S, where

$$c = \frac{\sqrt{n-1} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{2} \Gamma\left(\frac{n}{2}\right)}$$

Hint: Recall that $X = (n-1)S^2/\sigma^2$ has a $\chi^2(n-1)$ distribution. "Hint": Select the appropriate value for k in part (0).

(b) Find the value of c when n = 5; when n = 6.