Discussion 07 Solutions

1. Suppose that number of accidents at a construction site follows a Poisson process with the average rate of 0.80 accidents per month. Assume all months are independent of each other.

"Hint": If T_{α} has a $Gamma(\alpha, \theta = 1/\lambda)$ distribution, where α is an integer, then $F_{T_{\alpha}}(t) = P(T_{\alpha} \le t) = P(X_t \ge \alpha)$ and $P(T_{\alpha} > t) = P(X_t \le \alpha - 1)$, where X_t has a $Poisson(\lambda t)$ distribution.

a) Find the probability that the first accident of a calendar year would occur during March.

 T_1 has Exponential distribution with $\lambda = 0.80$ or $\theta = \frac{1}{0.80} = 1.25$.

$$P(2 < T_1 < 3) = \int_{2}^{3} 0.80 e^{-0.80 t} dt = e^{-1.60} - e^{-2.40} \approx 0.1112.$$

OR

$$P(2 < T_1 < 3) = P(T_1 > 2) - P(T_1 > 3) = P(X_2 = 0) - P(X_3 = 0)$$

$$= P(Poisson(1.60) = 0) - P(Poisson(2.40) = 0) = 0.202 - 0.091 = 0.111.$$

$$P \left(\begin{array}{c} \text{no accidents during} \\ \text{the first two months} \end{array} \right. AND \left(\begin{array}{c} \text{at least one accident} \\ \text{during the third month} \end{array} \right)$$
$$= P(X_2 = 0) \times P(X_1 \ge 1) = 0.202 \times (1 - 0.449) \approx \textbf{0.111}.$$

Jan Feb Mar no accident no accident accident(s)
$$0.449 \times 0.449 \times 0.551 \approx 0.111.$$

b) Find the probability that the third accident of a calendar year would occur during April.

T₃ has Gamma distribution with $\alpha = 3$ and $\lambda = 0.80$ or $\theta = \frac{1}{0.80} = 1.25$.

$$P(3 < T_3 < 4) = P(T_3 > 3) - P(T_3 > 4) = P(X_3 \le 2) - P(X_4 \le 2)$$

$$= P(Poisson(2.4) \le 2) - P(Poisson(3.2) \le 2) = 0.570 - 0.380 = 0.190.$$

OR

$$P(3 < T_3 < 4) = \int_3^4 \frac{0.80^3}{\Gamma(3)} t^{3-1} e^{-0.80t} dt = \int_3^4 \frac{0.80^3}{2} t^{3-1} e^{-0.80t} dt \approx \mathbf{0.189805}.$$

$$\begin{split} P \left(\begin{array}{c} \text{two accidents during} \\ \text{the first three months} \end{array} \right. & \text{AND} \quad \begin{array}{c} \text{at least one accident} \\ \text{during April} \end{array} \right) \\ & + \quad P \left(\begin{array}{c} \text{one accident during} \\ \text{the first three months} \end{array} \right. & \text{AND} \quad \begin{array}{c} \text{at least two accidents} \\ \text{during April} \end{array} \right) \\ & + \quad P \left(\begin{array}{c} \text{no accidents during} \\ \text{the first three months} \end{array} \right. & \text{AND} \quad \begin{array}{c} \text{at least three accidents} \\ \text{during April} \end{array} \right) = \dots \end{split}$$

c) Find the probability that the third accident of a calendar year would occur during spring (March, April, or May).

 T_3 has Gamma distribution with $\alpha = 3$ and $\lambda = 0.80$ or $\theta = \frac{1}{0.80} = 1.25$.

$$P(2 < T_3 < 5) = P(T_3 > 2) - P(T_3 > 5) = P(X_2 \le 2) - P(X_5 \le 2)$$

$$= P(Poisson(1.6) \le 2) - P(Poisson(4.0) \le 2) = 0.783 - 0.238 = 0.545.$$

OR

$$P(2 < T_3 < 5) = \int_2^5 \frac{0.80^3}{\Gamma(3)} t^{3-1} e^{-0.80t} dt = \int_2^5 \frac{0.80^3}{2} t^{3-1} e^{-0.80t} dt \approx \mathbf{0.545255}.$$

$$P \left(\begin{array}{c} \text{two accidents during} \\ \text{the first two months} \end{array} \right) \quad \begin{array}{c} \text{at least one accident} \\ \text{during the next three months} \end{array} \right) \\ + P \left(\begin{array}{c} \text{one accident during} \\ \text{the first two months} \end{array} \right) \quad \begin{array}{c} \text{at least two accidents} \\ \text{during the next three months} \end{array} \right) \\ + P \left(\begin{array}{c} \text{no accidents during} \\ \text{the first two months} \end{array} \right) \quad \begin{array}{c} \text{at least three accidents} \\ \text{during the next three months} \end{array} \right) = \dots \\ \end{array}$$

2. As Alex is leaving for college, his parents give him a car, but warn him that they would take the car away if Alex gets 6 speeding tickets. Suppose that Alex receives speeding tickets according to Poisson process with the average rate of one ticket per six months.

$$X_t$$
 = number of speeding tickets in t years. Poisson (λt)

$$T_k$$
 = time of the k th speeding ticket. Gamma, $\alpha = k$.

one ticket per six months
$$\Rightarrow \lambda = 2$$
.

If
$$T_{\alpha}$$
 has a Gamma(α , $\theta = 1/\lambda$) distribution, where α is an integer, then
$$P(T_{\alpha} \le t) = P(X_t \ge \alpha) \quad \text{and} \quad P(T_{\alpha} > t) = P(X_t \le \alpha - 1),$$
 where X_t has a Poisson(λt) distribution.

a) Find the probability that it would take Alex longer than two years to get his sixth speeding ticket.

$$P(T_6 > 2) = P(X_2 \le 5) = P(Poisson(4) \le 5) = 0.785.$$

$$P(T_6 > 2) = \int_{2}^{\infty} \frac{2^6}{\Gamma(6)} t^{6-1} e^{-2t} dt = \int_{2}^{\infty} \frac{2^6}{5!} t^5 e^{-2t} dt = \dots$$

b) Find the probability that it would take Alex less than four years to get his sixth speeding ticket.

$$P(T_6 < 4) = P(X_4 \ge 6) = P(X_4 \ge 6) = 1 - P(X_4 \le 5)$$

= 1 - P(Poisson(8) \le 5) = 1 - 0.191 = **0.809**.

$$P(T_6 < 4) = \int_0^4 \frac{2^6}{\Gamma(6)} t^{6-1} e^{-2t} dt = \int_0^4 \frac{2^6}{5!} t^5 e^{-2t} dt = \dots$$

c) Find the probability that Alex would get his sixth speeding ticket during the fourth year.

$$P(3 < T_6 < 4) = P(T_6 > 3) - P(T_6 > 4) = P(X_3 \le 5) - P(X_4 \le 5)$$
$$= P(Poisson(6) \le 5) - P(Poisson(8) \le 5) = 0.446 - 0.191 = 0.255.$$

OR

$$P(3 < T_6 < 4) = \int_3^4 \frac{2^6}{\Gamma(6)} t^{6-1} e^{-2t} dt = \int_3^4 \frac{2^6}{5!} t^5 e^{-2t} dt = \dots$$

d) Find the probability that Alex would get his sixth speeding ticket during the third year.

$$P(2 < T_6 < 3) = P(T_6 > 2) - P(T_6 > 3) = P(X_2 \le 5) - P(X_3 \le 5)$$
$$= P(Poisson(4) \le 5) - P(Poisson(6) \le 5) = 0.785 - 0.446 = 0.339.$$

$$P(2 < T_6 < 3) = \int_2^3 \frac{2^6}{\Gamma(6)} t^{6-1} e^{-2t} dt = \int_2^3 \frac{2^6}{5!} t^5 e^{-2t} dt = \dots$$

3. Consider two continuous random variables X and Y with joint p.d.f.

$$f_{X,Y}(x,y) = C(x+2y), \quad 0 < x < 2, \quad 0 < y < 3,$$
 zero elsewhere.

3

1

2

3

- a) Sketch the support of (X, Y). That is, sketch $\{0 < x < 2, 0 < y < 3\}$.
- b) Find the value of C so that $f_{X,Y}(x,y)$ is a valid joint p.d.f.

c) Find the marginal probability density function of X, $f_X(x)$.

$$f_{X}(x) = \int_{0}^{3} \frac{1}{24} (x+2y) dy = \frac{1}{24} (xy+y^{2}) \Big|_{0}^{3} = \frac{1}{24} (3x+9) = \frac{x+3}{8}, \quad 0 < x < 2.$$

d) Find the marginal probability density function of Y, $f_{Y}(y)$.

$$f_{Y}(y) = \int_{0}^{2} \frac{1}{24} (x+2y) dx = \frac{1}{24} \left(\frac{x^{2}}{2} + 2xy \right) \begin{vmatrix} 2 \\ 0 \end{vmatrix}$$
$$= \frac{1}{24} (2+4y) = \frac{1+2y}{12}, \quad 0 < y < 3.$$

4. Let X and Y have the joint p.d.f.

$$f_{X,Y}(x,y) = Cx^2y$$
, $0 < x < 4$, $0 < y < \sqrt{x}$, zero elsewhere.

a) Sketch the support of (X, Y). That is, sketch $\{0 < x < 4, 0 < y < \sqrt{x}\}$.

b) Find the value of C so that $f_{X,Y}(x,y)$ is a valid joint p.d.f.

$$1 = \int_{0}^{4} \left(\int_{0}^{\sqrt{x}} C x^{2} y \, dy \right) dx = \int_{0}^{4} \frac{C}{2} x^{2} y^{2} \left| \int_{0}^{\sqrt{x}} dx \right| = \int_{0}^{4} \frac{C}{2} x^{3} \, dx = \frac{C}{8} x^{4} \left| \int_{0}^{4} dx \right| = 32 C.$$

$$\Rightarrow C = \frac{1}{32}.$$

c) Find the marginal probability density function of X, $f_X(x)$.

$$f_X(x) = \int_0^{\sqrt{x}} \frac{1}{32} x^2 y \, dy = \frac{1}{64} x^2 y^2 \Big|_0^{\sqrt{x}} = \frac{1}{64} x^3, \quad 0 < x < 4.$$

d) Find the marginal probability density function of Y, $f_{Y}(y)$.

$$f_{Y}(y) = \int_{y^{2}}^{4} \frac{1}{32} x^{2} y \, dx = \frac{y}{96} \cdot x^{3} \Big|_{y^{2}}^{4} = \frac{y}{96} \cdot \left(64 - y^{6}\right) = \frac{2}{3} y - \frac{1}{96} y^{7}, \quad 0 < y < 2.$$

e) Are X and Y independent?

If X and Y are not independent, find Cov(X, Y).

 $f(x,y) \neq f_X(x) \cdot f_Y(y)$. \Rightarrow X and Y are **NOT independent**.

The support of (X, Y) is NOT a rectangle. \Rightarrow X and Y are **NOT independent**.

$$E(X) = \int_{0}^{4} x \cdot \frac{1}{64} x^{3} dx = \int_{0}^{4} \frac{1}{64} x^{4} dx = \frac{1}{320} x^{5} \Big|_{0}^{4} = \frac{16}{5} = 3.2.$$

$$E(Y) = \int_{0}^{2} y \cdot \left(\frac{2}{3}y - \frac{1}{96}y^{7}\right) dy = \int_{0}^{2} \left(\frac{2}{3}y^{2} - \frac{1}{96}y^{8}\right) dy = \left(\frac{2}{9}y^{3} - \frac{1}{864}y^{9}\right) \Big|_{0}^{2}$$
$$= \frac{16}{9} - \frac{16}{27} = \frac{32}{27} \approx 1.1852.$$

$$E(XY) = \int_{0}^{4} \left(\int_{0}^{\sqrt{x}} xy \cdot \frac{1}{32} x^{2} y \, dy \right) dx = \int_{0}^{4} \frac{1}{96} x^{3} y^{3} \Big|_{0}^{\sqrt{x}} dx = \int_{0}^{4} \frac{1}{96} x^{9/2} \, dx$$
$$= \frac{1}{528} x^{11/2} \Big|_{0}^{4} = \frac{128}{33} \approx 3.8788.$$

$$Cov(X,Y) = E(XY) - E(X) \cdot E(Y) = \frac{128}{33} - \frac{16}{5} \cdot \frac{32}{27} = \frac{128}{1485} \approx 0.0862.$$

5. Let the joint probability density function for (X, Y) be

$$f(x,y) = x + y,$$

 $x > 0, y > 0, x + 2y < 2,$

zero otherwise.

a) Find the probability P(Y > X).

intersection point:

$$y = x \quad \text{and} \quad x + 2y = 2$$

$$x = \frac{2}{3} \quad \text{and} \quad y = \frac{2}{3}$$

$$P(Y > X) = \int_{0}^{2/3} \left(\int_{x}^{1-(x/2)} (x+y) dy \right) dx = \int_{0}^{2/3} \left(\frac{1}{2} + \frac{1}{2}x - \frac{15}{8}x^{2} \right) dx = \frac{7}{27}.$$

OR

$$P(Y > X) = 1 - \int_{0}^{2/3} \left(\int_{y}^{2-2y} (x+y) dx \right) dy = 1 - \int_{0}^{2/3} \left(2 - 2y - \frac{3}{2}y^{2} \right) dx = \frac{7}{27}.$$

b) Find the marginal p.d.f. of X, $f_X(x)$.

$$f_{X}(x) = \int_{0}^{1-(x/2)} (x+y)dy = \frac{1}{2} + \frac{1}{2}x - \frac{3}{8}x^{2},$$
 $0 < x < 2.$

c) Find the marginal p.d.f. of Y, $f_{Y}(y)$.

$$f_{Y}(y) = \int_{0}^{2-2y} (x+y)dx = 2-2y,$$
 $0 < y < 1.$

d)* Are X and Y independent? If not, find Cov(X, Y).

The support of (X, Y) is NOT a rectangle. \Rightarrow X and Y are **NOT independent**.

OR

 $f_{X,Y}(x,y) \neq f_X(x) \times f_Y(y)$. \Rightarrow X and Y are **NOT independent**.

$$E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) dx = \int_{0}^{2} x \cdot \left(\frac{1}{2} + \frac{1}{2}x - \frac{3}{8}x^2\right) dx = \int_{0}^{2} \left(\frac{1}{2}x + \frac{1}{2}x^2 - \frac{3}{8}x^3\right) dx$$
$$= \left(\frac{1}{4}x^2 + \frac{1}{6}x^3 - \frac{3}{32}x^4\right) \begin{vmatrix} 2 \\ 0 \end{vmatrix} = 1 + \frac{4}{3} - \frac{3}{2} = \frac{5}{6}.$$

$$E(Y) = \int_{-\infty}^{\infty} y \cdot f_Y(y) dy = \int_{0}^{1} y \cdot (2 - 2y) dy = \int_{0}^{1} (2y - 2y^{2}) dy$$
$$= \left(y^{2} - \frac{2}{3} y^{3} \right) \begin{vmatrix} 1 \\ 0 \end{vmatrix} = 1 - \frac{2}{3} = \frac{1}{3}.$$

$$E(XY) = \int_{0}^{1} \left(\int_{0}^{2-2y} xy \cdot (x+y) \, dx \right) dy = \int_{0}^{1} \left(\frac{y}{3} (2-2y)^{3} + \frac{y^{2}}{2} (2-2y)^{2} \right) dx$$
$$= \int_{0}^{1} \left(\frac{8}{3} y - 6y^{2} + 4y^{3} - \frac{2}{3} y^{4} \right) dy = \frac{4}{3} - 2 + 1 - \frac{2}{15} = \frac{1}{5}.$$

$$Cov(X,Y) = E(XY) - E(X) \times E(Y) = \frac{1}{5} - \frac{5}{6} \times \frac{1}{3} = -\frac{7}{90} \approx -0.077778.$$

6-9. Let the joint probability density function for (X, Y) be

$$f(x,y) = \frac{12}{5}xy^3$$
, $0 < y < 1$, $y < x < 2$, zero otherwise.

Do NOT use a computer. You may only use $+, -, \times, \div$, and $\sqrt{\ }$ on a calculator. Show all work. Example:

$$\int_{0}^{1} \left(\int_{y}^{2} \frac{12}{5} x y^{3} dx \right) dy = \int_{0}^{1} \left(\frac{6}{5} x^{2} y^{3} \right) \Big|_{x=y}^{x=2} dy = \int_{0}^{1} \left(\frac{24}{5} y^{3} - \frac{6}{5} y^{5} \right) dy$$

$$= \left(\frac{6}{5} y^{4} - \frac{1}{5} y^{6} \right) \Big|_{y=0}^{y=1} = \frac{6}{5} - \frac{1}{5} = 1. \quad \Rightarrow \quad f(x,y) \text{ is a valid joint p.d.f.}$$

6. a) Sketch the support of (X, Y). That is, sketch $\{0 < y < 1, y < x < 2\}$.

b) Find the marginal probability density function of X, $f_X(x)$.

For
$$0 < x < 1$$
, $f_X(x) = \int_0^x \frac{12}{5} x y^3 dy = \left(\frac{3}{5} x y^4\right) \Big|_{y=0}^{y=x} = \frac{3}{5} x^5$.

For
$$1 < x < 2$$
, $f_X(x) = \int_0^1 \frac{12}{5} x y^3 dy = \left(\frac{3}{5} x y^4\right) \Big|_{y=0}^{y=1} = \frac{3}{5} x$.

Check:
$$\int_{0}^{1} \frac{3}{5} x^{5} dx + \int_{1}^{2} \frac{3}{5} x dx = \left(\frac{1}{10} x^{6}\right) \left| \frac{x=1}{x=0} + \left(\frac{3}{10} x^{2}\right) \right| \frac{x=2}{x=1} = \frac{1}{10} + \frac{9}{10} = 1.$$

c) Find the marginal probability density function of Y, $f_{Y}(y)$.

For
$$0 < y < 1$$
, $f_Y(y) = \int_y^2 \frac{12}{5} x y^3 dx = \left(\frac{6}{5} x^2 y^3 \right) \Big|_{x=y}^{x=2} = \frac{24}{5} y^3 - \frac{6}{5} y^5$.

Check:
$$\int_{0}^{1} \left(\frac{24}{5} y^{3} - \frac{6}{5} y^{5} \right) dy = \left(\frac{6}{5} y^{4} - \frac{1}{5} y^{6} \right) \Big|_{y=0}^{y=1} = \frac{6}{5} - \frac{1}{5} = 1.$$

d) Are X and Y independent? Justify your answer.

The support of (X, Y) is NOT a rectangle. X and Y are **NOT independent**.

OR

Since $f(x, y) \neq f_X(x) \cdot f_Y(y)$, X and Y are **NOT independent**.

7. Find the probability P(X > 2Y).

a) Set up the double integral(s) over the region that "we want" with the outside integral w.r.t. x and the inside integral w.r.t. y.

$$\int_{0}^{2} \left(\int_{0}^{x/2} \frac{12}{5} x y^{3} dy \right) dx$$

b) Set up the double integral(s) over the region that "we want" with the outside integral w.r.t. y and the inside integral w.r.t. x.

$$\int_{0}^{1} \left(\int_{2y}^{2} \frac{12}{5} x y^{3} dx \right) dy$$

c) Set up the double integral(s) over the region that "we do not want" with the outside integral w.r.t. x and the inside integral w.r.t. y.

$$\int_{0}^{1} \left(\int_{x/2}^{x} \frac{12}{5} x y^{3} dy \right) dx + \int_{1}^{2} \left(\int_{x/2}^{1} \frac{12}{5} x y^{3} dy \right) dx$$

d) Set up the double integral(s) over the region that "we do not want" with the outside integral w.r.t. y and the inside integral w.r.t. x.

$$\int_{0}^{1} \left(\int_{y}^{2y} \frac{12}{5} x y^{3} dx \right) dy$$

e) Use one of (a) - (d) to find the desired probability.

(a)
$$\int_{0}^{2} \left(\int_{0}^{x/2} \frac{12}{5} x y^{3} dy \right) dx = \int_{0}^{2} \frac{3}{80} x^{5} dx = \left(\frac{1}{160} x^{6} \right) \Big|_{x=0}^{x=2} = \frac{2}{5} = \mathbf{0.40}.$$

(b)
$$\int_{0}^{1} \left(\int_{2y}^{2} \frac{12}{5} x y^{3} dx \right) dy = \int_{0}^{1} \left(\frac{24}{5} y^{3} - \frac{24}{5} y^{5} \right) dy = \left(\frac{6}{5} y^{4} - \frac{4}{5} y^{6} \right) \Big|_{y=0}^{y=1} = \frac{2}{5}.$$

(c)
$$1 - \int_{0}^{1} \left(\int_{x/2}^{x} \frac{12}{5} x y^{3} dy \right) dx - \int_{1}^{2} \left(\int_{x/2}^{1} \frac{12}{5} x y^{3} dy \right) dx$$

$$= 1 - \int_{0}^{1} \left(\frac{3}{5} x^{5} - \frac{3}{80} x^{5} \right) dx - \int_{1}^{2} \left(\frac{3}{5} x - \frac{3}{80} x^{5} \right) dx$$

$$= 1 - \left(\frac{1}{10} x^{6} - \frac{1}{160} x^{6} \right) \Big|_{x=0}^{x=1} - \left(\frac{3}{10} x^{2} - \frac{1}{160} x^{6} \right) \Big|_{x=1}^{x=2}$$

$$= 1 - \left(\frac{1}{10} - \frac{1}{160} \right) - \left(\frac{6}{5} - \frac{2}{5} \right) + \left(\frac{3}{10} - \frac{1}{160} \right) = \frac{2}{5}.$$

(d)
$$1 - \int_{0}^{1} \left(\int_{y}^{2y} \frac{12}{5} x y^{3} dx \right) dy = 1 - \int_{0}^{1} \left(\frac{24}{5} y^{5} - \frac{6}{5} y^{5} \right) dy = 1 - \int_{0}^{1} \frac{18}{5} y^{5} dy$$
$$= 1 - \left(\frac{3}{5} y^{6} \right) \Big|_{y=0}^{y=1} = 1 - \frac{3}{5} = \frac{2}{5}.$$

8. Find the probability P(X + Y < 2).

a) Set up the double integral(s) over the region that "we want" with the outside integral w.r.t. x and the inside integral w.r.t. y.

$$\int_{0}^{1} \left(\int_{0}^{x} \frac{12}{5} x y^{3} dy \right) dx + \int_{1}^{2} \left(\int_{0}^{2-x} \frac{12}{5} x y^{3} dy \right) dx$$

b) Set up the double integral(s) over the region that "we want" with the outside integral w.r.t. y and the inside integral w.r.t. x.

$$\int_{0}^{1} \left(\int_{y}^{2-y} \frac{12}{5} x y^{3} dx \right) dy$$

c) Set up the double integral(s) over the region that "we do not want" with the outside integral w.r.t. x and the inside integral w.r.t. y.

$$\int_{1}^{2} \left(\int_{2-x}^{1} \frac{12}{5} x y^{3} dy \right) dx$$

d) Set up the double integral(s) over the region that "we do not want" with the outside integral w.r.t. y and the inside integral w.r.t. x.

$$\int_{0}^{1} \left(\int_{2-y}^{2} \frac{12}{5} x y^{3} dx \right) dy$$

e) Use one of (a) - (d) to find the desired probability.

(b)
$$\int_{0}^{1} \left(\int_{y}^{2-y} \frac{12}{5} x y^{3} dx \right) dy = \int_{0}^{1} \left(\frac{6}{5} x^{2} y^{3} \right) \Big|_{x=y}^{x=2-y} dy = \int_{0}^{1} \left(\frac{24}{5} y^{3} - \frac{24}{5} y^{4} \right) dy$$
$$= \left(\frac{6}{5} y^{4} - \frac{24}{25} y^{5} \right) \Big|_{y=0}^{y=1} = \frac{6}{25} = \mathbf{0.24}.$$

(d)
$$1 - \int_{0}^{1} \left(\int_{2-y}^{2} \frac{12}{5} x y^{3} dx \right) dy = 1 - \int_{0}^{1} \left(\frac{6}{5} x^{2} y^{3} \right) \Big|_{x=2-y}^{x=2} dy$$
$$= 1 - \int_{0}^{1} \left(\frac{24}{5} y^{4} - \frac{6}{5} y^{5} \right) dy = 1 - \left(\frac{24}{25} y^{5} - \frac{1}{5} y^{6} \right) \Big|_{y=0}^{y=1} = \frac{6}{25}.$$

(a)
$$\int_{0}^{1} \left(\int_{0}^{x} \frac{12}{5} x y^{3} dy \right) dx + \int_{1}^{2} \left(\int_{0}^{2-x} \frac{12}{5} x y^{3} dy \right) dx$$

$$= \int_{0}^{1} \frac{3}{5} x^{5} dx + \int_{1}^{2} \frac{3}{5} x (2-x)^{4} dx = \frac{1}{10} + \int_{1}^{2} \frac{3}{5} x (2-x)^{4} dx = \dots$$

(c)
$$1 - \int_{1}^{2} \left(\int_{2-x}^{1} \frac{12}{5} x y^{3} dy \right) dx = 1 - \int_{1}^{2} \left(\frac{3}{5} x - \frac{3}{5} x (2-x)^{4} \right) dx = \dots$$

9. Find the probability P(XY < 1).

a) Set up the double integral(s) over the region that "we want" with the outside integral w.r.t. x and the inside integral w.r.t. y.

$$\int_{0}^{1} \left(\int_{0}^{x} \frac{12}{5} x y^{3} dy \right) dx + \int_{1}^{2} \left(\int_{0}^{1/x} \frac{12}{5} x y^{3} dy \right) dx$$

b) Set up the double integral(s) over the region that "we want" with the outside integral w.r.t. y and the inside integral w.r.t. x.

$$\int_{0}^{1/2} \left(\int_{y}^{2} \frac{12}{5} x y^{3} dx \right) dy + \int_{1/2}^{1} \left(\int_{y}^{1/y} \frac{12}{5} x y^{3} dx \right) dy$$

c) Set up the double integral(s) over the region that "we do not want" with the outside integral w.r.t. x and the inside integral w.r.t. y.

$$\int_{1}^{2} \left(\int_{1/x}^{1} \frac{12}{5} x y^{3} dy \right) dx$$

d) Set up the double integral(s) over the region that "we do not want" with the outside integral w.r.t. y and the inside integral w.r.t. x.

$$\int_{1/2}^{1} \left(\int_{1/y}^{2} \frac{12}{5} x y^{3} dx \right) dy$$

e) Use one of (a) - (d) to find the desired probability.

(a)
$$\int_{0}^{1} \left(\int_{0}^{x} \frac{12}{5} x y^{3} dy \right) dx + \int_{1}^{2} \left(\int_{0}^{1/x} \frac{12}{5} x y^{3} dy \right) dx = \int_{0}^{1} \frac{3}{5} x^{5} dx + \int_{1}^{2} \frac{3}{5} \frac{1}{x^{3}} dx$$

$$= \left(\frac{1}{10} x^{6} \right) \left| x = 1 \atop x = 0 \right| + \left(-\frac{3}{10} \frac{1}{x^{2}} \right) \left| x = 2 \atop x = 1 \right| = \frac{1}{10} - \frac{3}{40} + \frac{3}{10} = \frac{13}{40} = \mathbf{0.325}.$$

(b)
$$\int_{0}^{1/2} \left(\int_{y}^{2} \frac{12}{5} x y^{3} dx \right) dy + \int_{1/2}^{1} \left(\int_{y}^{1/2} \frac{12}{5} x y^{3} dx \right) dy$$

$$= \int_{0}^{1/2} \left(\frac{24}{5} y^{3} - \frac{6}{5} y^{5} \right) dy + \int_{1/2}^{1} \left(\frac{6}{5} y - \frac{6}{5} y^{5} \right) dy$$

$$= \left(\frac{6}{5} y^{4} - \frac{1}{5} y^{6} \right) \Big|_{0}^{1/2} + \left(\frac{3}{5} y^{2} - \frac{1}{5} y^{6} \right) \Big|_{1/2}^{1}$$

$$= \frac{3}{40} - \frac{1}{320} + \frac{3}{5} - \frac{1}{5} - \frac{3}{20} + \frac{1}{320} = \frac{2}{5} - \frac{3}{40} = \frac{13}{40}.$$

(c)
$$1 - \int_{1}^{2} \left(\int_{1/x}^{1} \frac{12}{5} x y^{3} dy \right) dx = 1 - \int_{1}^{2} \left(\frac{3}{5} x - \frac{3}{5} \frac{1}{x^{3}} \right) dx = 1 - \left(\frac{3}{10} x^{2} + \frac{3}{10} \frac{1}{x^{2}} \right) \Big|_{x=1}^{x=2}$$
$$= 1 - \left(\frac{6}{5} + \frac{3}{40} - \frac{3}{10} - \frac{3}{10} \right) = 1 - \left(\frac{3}{5} + \frac{3}{40} \right) = 1 - \frac{27}{40} = \frac{13}{40}.$$

(d)
$$1 - \int_{1/2}^{1} \left(\int_{1/y}^{2} \frac{12}{5} x y^3 dx \right) dy = 1 - \int_{1/2}^{1} \left(\frac{24}{5} y^3 - \frac{6}{5} y \right) dy = 1 - \left(\frac{6}{5} y^4 - \frac{3}{5} y^2 \right) \Big|_{1/2}^{1}$$
$$= 1 - \left(\frac{6}{5} - \frac{3}{5} - \frac{3}{40} + \frac{3}{20} \right) = 1 - \left(\frac{3}{5} + \frac{3}{40} \right) = 1 - \frac{27}{40} = \frac{13}{40}.$$

10. Let the joint probability density function for (X, Y) be

$$f(x,y) = Cxy,$$

 $x > 0, y > 0,$
 $x^2 + (y+3)^2 < 25,$

zero elsewhere.

a) Find the value of C so that f(x, y) is a valid joint p.d.f.

Must have

$$1 = \int_{0}^{2} \left[\int_{0}^{\sqrt{25 - (y+3)^{2}}} \int_{0}^{25 - (y+3)^{2}} Cxy dx \right] dy = \int_{0}^{2} \frac{C}{2} y \left[25 - (y+3)^{2} \right] dy$$
$$= \frac{C}{2} \int_{0}^{2} \left[16y - 6y^{2} - y^{3} \right] dy$$
$$= \frac{C}{2} \left[8y^{2} - 2y^{3} - \frac{1}{4}y^{4} \right] \Big|_{0}^{2} = 6C.$$

$$\Rightarrow$$
 $C = \frac{1}{6}$.

b) Find P(2X + Y > 2).

$$1 - \int_{0}^{1} \left(\int_{0}^{2-2x} \frac{1}{6} x y \, dy \right) dx$$
$$= 1 - \int_{0}^{1} \frac{1}{12} (2 - 2x)^{2} x \, dx$$

$$= 1 - \int_{0}^{1} \frac{1}{3} \left(x - 2x^{2} + x^{3} \right) dx = 1 - \frac{1}{3} \left(\frac{1}{2} - \frac{2}{3} + \frac{1}{4} \right) = 1 - \frac{1}{36} = \frac{35}{36}.$$

$$1 - \int_{0}^{2} \left(\int_{0}^{\frac{2-y}{2}} \frac{1}{6} x y dx \right) dy = \dots$$

$$\int_{0}^{2} \left(\int_{\frac{2-y}{2}}^{\sqrt{25-(y+3)^{2}}} \frac{1}{6} x y \, dx \right) dy = \dots$$

$$\int_{0}^{1} \left(\int_{2-2x}^{-3+\sqrt{25-x^{2}}} \frac{1}{6} x y \, dy \right) dx + \int_{1}^{4} \left(\int_{0}^{-3+\sqrt{25-x^{2}}} \frac{1}{6} x y \, dy \right) dx = \dots$$

c) Find
$$P(X-3Y > 0)$$
.

$$P(X-3Y>0) = P(X>3Y)$$

$$= \int_{0}^{1} \left[\int_{3y}^{\sqrt{25 - (y+3)^{2}}} \frac{1}{6} x y \, dx \right] dy$$

$$= \int_{0}^{1} \frac{1}{12} y \left[25 - (y+3)^{2} - 9y^{2} \right] dy = \int_{0}^{1} \frac{1}{12} y \left[16 - 6y - 10y^{2} \right] dy$$

$$= \int_{0}^{1} \left[\frac{4}{3} y - \frac{1}{2} y^{2} - \frac{5}{6} y^{3} \right] dy = \frac{2}{3} - \frac{1}{6} - \frac{5}{24} = \frac{7}{24} \approx 0.2916667.$$

11. Suppose that (X, Y) is uniformly distributed over the region defined by $x \ge 0$, $y \ge 0$, $x^2 + y^2 \le 1$. That is,

$$f(x,y) = C$$
, $x \ge 0$, $y \ge 0$, $x^2 + y^2 \le 1$, zero elsewhere.

a) What is the joint probability density function of X and Y? That is, find the value of C so that f(x, y) is a valid joint p.d.f.

The area of a circle is πr^2 .

 \Rightarrow The area of the support of (X, Y) is $\frac{\pi}{4}$.

$$\Rightarrow C = \frac{4}{\pi} \approx 1.27324.$$

b) Find P(X + Y < 1).

Since uniform,

$$\frac{want \ area}{total \ area} = \frac{\frac{1}{2}}{\frac{\pi}{4}} = \frac{2}{\pi}$$

$$\approx 0.63662.$$

c) Find P(Y > 2X).

Since uniform,

$$1 - \frac{\arctan(2)}{\frac{\pi}{2}} = 1 - \frac{2 \times \arctan(2)}{\pi}$$

$$\approx 0.295167.$$
OR

$$\frac{\arctan\left(\frac{1}{2}\right)}{2} = \frac{2 \times \arctan\left(\frac{1}{2}\right)}{2}$$

 $\approx 0.295167.$

d)* Are X and Y independent?

The support of (X, Y) is not a rectangle.

 \Rightarrow X and Y are **NOT independent**.

12. Consider two continuous random variables X and Y with joint p.d.f.

$$f_{X,Y}(x,y) = \frac{C}{(2x+y)^3}, \quad y>1, \quad 0 < x < y,$$
 zero elsewhere.

a) Sketch the support of (X, Y). That is, sketch $\{y > 1, 0 < x < y\}$.

b) Find the value of C so that $f_{X,Y}(x,y)$ is a valid joint p.d.f.

$$1 = \int_{1}^{\infty} \left(\int_{0}^{y} \frac{C}{(2x+y)^{3}} dx \right) dy = \int_{1}^{\infty} \left(-\frac{C}{4(2x+y)^{2}} \right) \left| \int_{0}^{y} dy \right|$$

$$= \int_{1}^{\infty} \left(-\frac{C}{36y^{2}} + \frac{C}{4y^{2}} \right) dy = \frac{2C}{9} \int_{1}^{\infty} \frac{1}{y^{2}} dy = \frac{2C}{9} \left(-\frac{1}{y} \right) \left| \int_{1}^{\infty} = \frac{2C}{9} \right|$$

$$\Rightarrow C = \frac{9}{2} = 4.5.$$

c) Find the marginal probability density function of X, $f_X(x)$.

For 0 < x < 1,

$$f_{X}(x) = \int_{1}^{\infty} \frac{9}{2(2x+y)^{3}} dy = -\frac{9}{4(2x+y)^{2}} \Big|_{1}^{\infty} = \frac{9}{4(2x+1)^{2}}, \quad 0 < x < 1.$$

For $1 < x < \infty$,

$$f_X(x) = \int_{x}^{\infty} \frac{9}{2(2x+y)^3} dy = -\frac{9}{4(2x+y)^2} \Big|_{x}^{\infty} = \frac{1}{4x^2}, \quad 1 < x < \infty.$$

d) Find the marginal probability density function of Y, $f_{Y}(y)$.

$$f_{Y}(y) = \int_{0}^{y} \frac{9}{2(2x+y)^{3}} dx = -\frac{9}{8(2x+y)^{2}} \begin{vmatrix} y \\ 0 \end{vmatrix}$$
$$= -\frac{1}{8y^{2}} + \frac{9}{8y^{2}} = \frac{1}{y^{2}}, \quad 1 < y < \infty.$$

$$P(X+Y<2)$$

$$= \int_{0}^{1} \left(\int_{1}^{2-x} \frac{9}{2(2x+y)^{3}} dy \right) dx$$

$$= \int_{0}^{1} \left(-\frac{9}{4(2x+y)^{2}} \right) \left| \int_{1}^{2-x} dx \right|$$

$$= \int_{0}^{1} \left(\frac{9}{4(2x+1)^{2}} - \frac{9}{4(x+2)^{2}} \right) dx$$

$$= \left(-\frac{9}{8(2x+1)} + \frac{9}{4(x+2)} \right) \left| \int_{0}^{1} dx \right|$$

$$= -\frac{9}{24} + \frac{9}{12} + \frac{9}{8} - \frac{9}{8} = \frac{3}{8} = \mathbf{0.375}.$$

f) Find P(X+Y>5).

$$P(X+Y>5)$$

$$= \int_{0}^{2.5} \left(\int_{5-x}^{\infty} \frac{9}{2(2x+y)^3} dy \right) dx$$

$$+ \int_{2.5}^{\infty} \left(\int_{x}^{\infty} \frac{9}{2(2x+y)^3} dy \right) dx$$

$$= \int_{0}^{2.5} \frac{9}{4(x+5)^2} dx + \int_{2.5}^{\infty} \frac{1}{4x^2} dx$$

$$= -\frac{9}{4(x+5)} \Big|_{0}^{2.5} - \frac{1}{4x} \Big|_{2.5}^{\infty}$$

$$= -\frac{9}{30} + \frac{9}{20} - 0 + \frac{1}{10} = \mathbf{0.25}.$$

g) Find P(Y > 3X).

$$P(Y > 3X)$$

$$= \int_{1}^{\infty} \left(\int_{0}^{y/3} \frac{9}{2(2x+y)^{3}} dx \right) dy$$

$$= \int_{1}^{\infty} \left(-\frac{9}{8(2x+y)^{2}} \right) \left| \int_{0}^{y/3} dy$$

$$= \int_{1}^{\infty} \left(\frac{9}{8y^{2}} - \frac{81}{200y^{2}} \right) dy$$

$$= \frac{9}{8} - \frac{81}{200} = \mathbf{0.72}.$$

h)* Are X and Y independent?

$$f_{X,Y}(x,y) \neq f_X(x) \cdot f_Y(y)$$
. \Rightarrow X and Y are **NOT independent**.

OR

The support of (X, Y) is NOT a rectangle. \Rightarrow X and Y are **NOT independent**.