
STAT 400 Discussion 11 Solutions Spring 2018 

 
 
1. A random sample of size  n = 9  from a normal  N ( µ , s 

2 )  distribution is obtained: 
 
 4.4       3.7       5.1       4.3       4.7       3.7       3.5       4.6       4.7 
 

a) Compute the sample mean    and  the sample standard deviation  s. 
 
 
 

  = 4.3. 
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0.8 
0 
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0.36 
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0.00 
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0.16 

  168.83   0 2.42 
 

            = 0.3025. 

 =  = 0.3025. 

 

 = 0.55. 
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b) Construct a 95% (two-sided) confidence interval for the overall (population) 
 mean. 
 
 
 

 s  is unknown.  n = 9 – small.  The confidence interval :  . 

              n - 1 = 9 - 1 = 8 degrees of freedom. 
 

 95% confidence level,  a = 0.05, a/2 = 0.025,  ( 8 ) = 2.306. 

   4.30 ± 0.423  ( 3.877 ; 4.723 ) 

 
 
 
 
 
c) Construct a 90% one-sided confidence interval for  µ  that provides an upper 

 bound for  µ. 
 
 
 

 t 0.10 ( 8 ) = 1.397.    =  4.3 + 1.397 ×   =  4.556. 

          ( – ∞ , 4.556 ) 
 
 
 
 
 
d) Construct a 95% one-sided confidence interval for  µ  that provides a lower 

 bound for  µ. 
 
 
 

 t 0.05 ( 8 ) = 1.860.    =  4.3 – 1.860 ×   =  3.959. 

          ( 3.959 , ∞ ) 
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e) Construct a 95% (two-sided) confidence interval for the overall standard deviation. 
 

 Confidence Interval for  s2 :   

 a = 0.05.    = 0.025.   = 0.975. 

  number of degrees of freedom = n - 1 = 9 - 1 = 8. 

   = 17.54.   = 2.180. 

    ( 0.13797 ; 1.11009 ) 

 
 Confidence Interval for  s :    =  ( 0.3714 ; 1.0536 ) 
 
 

f) Construct a 90% one-sided confidence interval for  s  that provides an upper 

 bound for  s. 
 

     = 3.490. 

 

    ( 0 , 0.8327 ) 

 
 

g) Construct a 95% one-sided confidence interval for  s  that provides a lower 

 bound for  s. 
 

      = 15.51. 

 

    ( 0.395 , ∞ ) 
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3. Suppose the time spent on a particular STAT 400 homework follows a normal  
 distribution with an overall standard deviation of 28 minutes and an unknown mean. 
 
a) Suppose a random sample of 49 students is obtained. Find the probability that the  
 average time spent on the homework for students in the sample is within 5 minutes of  
 the overall mean. 
 

P ( µ - 5 £  £ µ + 5 ) = ? 

 n = 49  -  large  (plus the distribution we sample from is normal).   

 P ( µ - 5 £  £ µ + 5 )  =   

   =  P ( - 1.25 £ Z £ 1.25 )  =  0.8944 – 0.1056  =  0.7888. 
 
 

b) A sample of 49 students has a sample mean of 234 minutes spent on the homework.  
 Construct a 90% confidence interval for the overall mean time spent on the  
 homework. 
 

 s is known.   The confidence interval :  . 

 a = 0.10           = 0.05.           = 1.645. 

   234 ± 6.58  ( 227.42 ; 240.58 ) 
 
 

c) What is the minimum sample size required if we want to estimate the overall mean time  
 spent on the homework to within 5 minutes with 90% confidence? 
 

  =  84.86.  Round up. n = 85. 
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4. An economist states that 10% of Springfield's labor force is unemployed.  A 
 random sample of 400 people in the labor force is obtained, of whom 28 are 
 unemployed. 
 

 n = 400,     y = 28,     = 0.07. 

 

a) Construct a 95% confidence interval for the unemployment rate in Springfield. 
 
 

 The confidence interval :   . 

 95% confidence level  a = 0.05  = 0.025.   = 1.960. 

   0.07 ± 0.025   ( 0.045 , 0.095 ) 

 
 

b) What is the minimum sample size required in order to estimate the unemployment rate 
 in Springfield to within 2% with 95% confidence?  (Use the economist’s guess.) 
 
 
 Use  p* = 0.10  (the economist’s guess).   e = 0.02. 

  = 864.36. 

  Round up.   n = 865. 
 
 

c) What is the minimum sample size required in order to estimate the unemployment rate 
 in Springfield to within 2% with 95% confidence?  (Assume no information is available.) 
 
 
 Use  p* = 0.50  (since no information is available).   e = 0.02. 

  = 2401. 
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5. The proportion of defective items is not supposed to be over 15%.  A buyer 
 wants to test whether the proportion of defectives exceeds the allowable limit. 
 The buyer takes a random sample of 100 items and finds that 19 are defective. 
 

 n = 100,     y = 19,     = 0.19. 

 

a) Construct a 95% confidence interval for the overall proportion of defective items. 
 
 

 The confidence interval :   . 

 95% confidence level  a = 0.05  = 0.025.   = 1.960. 

   0.19 ± 0.077   ( 0.113 , 0.267 ) 

 
 

b) What is the minimum sample size required in order to estimate the overall proportion 
 of defective items to within 3% with 95% confidence?  (Assume that the overall 
 proportion of defective items is at most 0.20.) 
 
 
 Use  p* = 0.20  (the closest to 0.50 possible value).   e = 0.03. 

  = 682.9511. 

  Round up.   n = 683. 
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6. A coffee machine is regulated so that the amount of coffee dispensed is normally  
 distributed.  A random sample of 17 cups is given below: 
 
 8.15  7.93  8.04  7.80  8.02  7.92 
 8.18  7.65  7.73  8.15  7.68  7.85 
 7.97  7.70  7.75  7.87  8.08 
 
a) Compute the sample mean and the sample standard deviation. 
 
“Hint”:  EXCEL =AVERAGE( … )  =SUM( … ) 
    =STDEV( … )  =VAR( … ) 
 
 OR  R > x = c( … ) 
    > mean(x)   > sum(x) 
    > sd(x)   > var(x) 
 
 
 
  = 7.91.   s = 0.175. 
 
 
 
 
 
b) Construct a 90% confidence interval for the overall average amount of coffee  
 dispensed by the machine. 
 
 
 
 n = 17.   a = 0.10. 

 s is unknown.   The confidence interval : . 

  = 0.05.  number of degrees of freedom = n - 1 = 17 - 1 = 16. 

  = 1.746.                    7.91 ± 0.074          ( 7.836 , 7.984 ) 
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7. 7.1-10 6.2-12  

 A leakage test was conducted to determine the effectiveness of a seal designed  
 To keep the inside of a plug airtight.  An air needle was inserted into the plug,  
 and the plug and needle were placed under water.  The pressure was then  
 increased until leakage was observed.  Let  X  equal the pressure in pounds per  
 square inch.  Assume that  X  follows a normal distribution.  The following 10  
 observations of X  were recorded: 
 
  3.1 3.3 4.5 2.8 3.5 3.5 3.7 4.2 3.9 3.3 
 
a) Find a point estimate of  µ  using the observations. 
 

   = 3.580; 
 

b) Find a point estimate of  s  using the observations. 
 

  s 
2 =  » 0.261778,       s » 0.51164; 

 

c) Find a 95% confidence upper bound for  µ. 
 

  t 0.05 ( 9 ) = 1.833, 

    =  ( 0, 3.8766 ). 
 
 
8. 7. continued 

d) Construct a 95% (two-sided) confidence interval for  s. 
 

    =  ( 0.35195, 0.93413 ); 

 

e) Find a 95% confidence upper bound for  s. 
 

    =  ( 0, 0.84177 ); 
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9. Analysis of the venom of seven 8-day-old worker bees yielded the sample mean 
 histamine content (nanograms) of 640, with sample standard deviation of 200. 
 Construct a 90% confidence interval for average histamine content for all worker 
 bees of this age.  (Assume that the histamine content is approximately normally 
 distributed.) 
 
 
 

 s is unknown    The confidence interval: . 

 
 n - 1 = 7 - 1 = 6 degrees of freedom  a = 0.10  t 0.05 = 1.943 
 

    640 ± 146.877 

      ( 493.123 ; 786.877 ) 
 
 
 
 
 
 
 
 
 
10. Suppose the IQs of students at Anytown State University are normally distributed 
 with standard deviation 15 and unknown mean. 
 
a) Suppose a random sample of 64 students is obtained.  Find the probability that  
 the average IQ of the students in the sample will be within 3 points of the overall 
 mean. 
 
 
 
 s = 15.       µ = ?       n = 64. 
 
 Need  P(µ - 3 £  £ µ + 3) = ?  
 
 n = 64  -  large  (plus the distribution we sample from is normal). 

  Central Limit Theorem:     
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 P(µ - 3 £  £ µ + 3)  =   

 
    =  P(- 1.60 £ Z £ 1.60)  =  F (1.60) – F (- 1.60) 
 
    =  0.9452 – 0.0548  =  0.8904. 
 
 
 
 

b) A sample of 64 students had a sample mean IQ of 115.  Construct a 95% 
 confidence interval for the overall mean IQ of students at Anytown State 
 University. 
 
 
 
  = 115  s = 15   n = 64 

 s is known.   The confidence interval :  . 

 a = 0.05           = 0.025.           = 1.96. 

   115 ± 3.675  ( 111.325 ; 118.675 ) 

 
 
 
 

c) What is the minimum sample size required if we want to estimate the overall  
 mean IQ of students at Anytown State University to within 3 points with 95% 
 confidence? 
 
 
 
 e = 3.          s = 15.          a = 0.05.           = 0.025.           = 1.96. 

  = 96.04.  Round up.  n = 97. 
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d) Suppose that only 20% of the students at Anytown State University have the IQ 
 above 130.  Find the overall average IQ of the students. 
 
 
 
 Know   P( X > 130 ) = 0.20. 
 
 �     Find  z  such that  P( Z > z ) = 0.20. 

  F ( z ) = 0.80.    z = 0.84. 

 �     x = µ + s × z.  130 = µ + 15 × ( 0.84 ).  µ = 117.4. 
 
 
 
 
 
 “Hint”:     From now on, you have  µ. 
 
 
 
e) Find the probability that the sample average IQ will be 115 or higher for a 
 random sample of 64 students. 
 
 
 
 Need  P(  ³ 115) = ? 
 
 n = 64  -  large  (plus the distribution we sample from is normal). 

  Central Limit Theorem:     

 P(  ³ 115)  =    =  P(Z ³ - 1.28)  =  1 – F (- 1.28) 

       =  1 – 0.1003  =  0.8997. 
 

X

.
n

ZX
=

-
s

µ

X
÷
÷
÷

ø

ö

ç
ç
ç

è

æ
-

³

64
15

4.117115ZP



f) Only students in the top 33% are allowed to join the science club.  What is 
 the minimum IQ required to be able to join the science club? 
 
 
 
 Need  x = ?  such that  P ( X > x ) = 0.33. 
 
 �     Find  z  such that  P ( Z > z ) = 0.33. 

  F ( z ) = 0.67.    z = 0.44. 
 
 �     x = µ + s × z.  x = 117.4 + 15 × ( 0.44 ) = 124. 
 
 
 
 
 
g) What proportion of the students have IQ of 127 or above? 
 
 
 

 P ( X ³ 127 )  =    =  P ( Z ³ 0.64 )  =  1 – F ( 0.64 ) 

       = 1 - 0.7389  =  0.2611. 
 
 
 
 
 
h) Find the probability that exactly 13 out of 64 randomly and independently selected 
 students have IQ of 127 or above. 
 
 
 
 Let  Y = number of students (out of the 64 selected) who have IQ of 127 or above. 
 Then  Y  has Binomial distribution,          n = 64,       p = 0.2611   ( see part (g) ). 
 

 P ( Y = 13 )  =    =  0.06837. 
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11. In a highly publicized study, doctors claimed that aspirin seems to help reduce heart 
 attacks rate.  Suppose a group of 400 men from a particular age group took an aspirin 
 tablet three times per week.  After three years, 56 of them had had heart attacks.  Let 
 p  denote the overall proportion of men (in this age group) who take aspirin that have 
 heart attacks in a 3-year period. 
 
a) Construct a 90% confidence interval for  p. 
 
 

 n = 400,          x = 56,           = 0.14. 

 

 The confidence interval :   . 

 a = 0.10.          a/2 = 0.05.          z a/2 = 1.645. 

           0.14 ± 0.0285          ( 0.1115 , 0.1685 ) 

 
 
 
b) Construct a 95% confidence interval for  p. 
 
 
 a = 0.05.          a/2 = 0.025.          z a/2 = 1.96. 

           0.14 ± 0.034          ( 0.106 , 0.174 ) 

 
 
 
c) Find the 99% confidence upper bound for  p. 
 
 

   a = 0.05.          z a = 2.326. 

 

    ( 0 , 0.18 ) 
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12.* (0) Let  X  have a  c 
2

 ( r )  distribution.  If  k > – r/2 ,  prove ( show ) that  E ( X 
k ) 

  exists and it is given by 

      E ( X 
k )  =  . 

 
 

  E ( X 
k )  =   

 

   =   

 

   =  ,  since   

 
       is the p.d.f. of  c 

2
 ( r + 2 k )  distribution. 

 
 
 
 6.4-14 (a),(b)  6.1-14 (a),(b)   
 
 Let  X 1 , X 2 , … , X n  be a random sample of size  n  from a  N ( µ , s 

2 )  distribution. 
 
 (a) Show that an unbiased estimator of  s  is  c S ,  where 
 

c  =  . 

 
  Hint:     Recall that   X  =  ( n – 1 ) S 

2/ s 
2   has a  c 

2
 ( n – 1 )  distribution. 

 
  “Hint”:     Select the appropriate value for  k  in part (0). 
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 From part (0), if  r = n – 1  and  k = 1/2 ,  then 

  . 

 
 Therefore, 

  ,     and     is unbiased for  s. 

 
 
 
(b) Find the value of  c  when  n = 5;  when  n = 6. 
 
 
 Recall G ( x ) = ( x – 1 ) G ( x – 1 ). 

 
Þ  if  n  is an integer. 

 

 

 n = 5  c  =    =    =    »  1.063846. 

 

 n = 6  c  =    =    =    »  1.050936. 

 
 n = 7  c  »  1.042352. 
 
 n = 8  c  »  1.036237. 
 
 n = 9  c  »  1.031661. 
 
 n = 10  c  »  1.028109. 
 
 • • • 
 
 c  →  1 as n  →  ∞ 
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