(a) Evaluate the following integral. Do not use a calculator or computer, except to check your work.
\[ \int_{0}^{\infty}x e^{-2x}dx \]
Solution:
Here we have integration by parts. We set
\[ u = x, \quad dv = e^{-2x}dx \]
Thus we have
\[ du = dx, \quad v = -\frac{1}{2}e^{-2x} \]
Then we obtain
\[ \int_{0}^{\infty} x e^{-2x}dx = -\frac{1}{2}xe^{-2x} \Bigg |_{0}^{\infty} + \int_{0}^{\infty} \frac{1}{2}e^{-2x}dx = \boxed{\frac{1}{4}} = \boxed{0.25} \]
Note that we are being somewhat abusive with notation since we are dealing with an improper intergral.
(b) Evaluate the following integral. Do not use a calculator or computer, except to check your work.
\[ \int_{0}^{\infty}x e^{-x^2}dx \]
Solution:
Here we use integration by substitution. We set
\[ u = x^2 \]
Thus we have
\[ du = 2xdx \]
Then we obtain
\[ \int_{0}^{\infty} x e^{-x^2}dx = \int_{0}^{\infty} \frac{1}{2}e^{-x^2}(2xdx) = \frac{1}{2} \int_{0}^{\infty} e^{-u}du = -\frac{1}{2}e^{-u} \Bigg |_{0}^{\infty} = \boxed{\frac{1}{2}} = \boxed{0.50} \]
Find the value \(c\) such that
\[ \iint\limits_A cx^2y^3 dydx = 1 \]
where \(A = \{ (x,y) : 0 < x < 1, \ 0 < y < \sqrt{x} \}\). Do not use a calculator or computer, except to check your work.
Solution:
First,
\[ \iint\limits_A cx^2y^3 dydx = 1 = \int_{0}^{1} \left(\int_{0}^{\sqrt{x}} cx^2y^3 dy \right) dx = \int_{0}^{1} \frac{c}{4}x^4 dx = \frac{c}{20} \]
Then,
\[ \frac{c}{20} = 1 \implies c = \boxed{20} \]
Suppose \(S = \{2, 3, 4, 5, \ldots \}\) and
\[ P(k) = c \cdot \frac{2^k}{k!}, \quad k = 2, 3, 4, 5, \ldots \]
Find the value of \(c\) that makes this a valid probability distribution.
Solution:
First note that,
\[ \begin{aligned} \sum_{\text{all } x} P(x) &= \sum_{k = 2}^{\infty} c \cdot \frac{2^k}{k!} \\ &= c \cdot \left( \sum_{k = 0}^{\infty}\frac{2^k}{k!} - \frac{2^0}{0!} - \frac{2^1}{1!} \right) \\ &= c \cdot (e^2 - 1 - 2) \\ &= c \cdot (e^2 - 3) \end{aligned} \]
Then since we need to have
\[ \sum_{\text{all } x} P(x) = 1 \]
we obtain
\[ c \cdot (e^2 - 3) = 1 \implies c = \boxed{\frac{1}{e^2 - 3}} \approx \boxed{0.22784}. \]
Suppose \(S = \{2, 3, 4, 5, \ldots \}\) and
\[ P(k) = \frac{6}{3^k}, \quad k = 2, 3, 4, 5, \ldots \]
Find \(P(\text{outcome is greater than 3})\).
Solution:
\[ \begin{aligned} P(\text{outcome is greater than 3}) &= P(4) + P(5) + P(6) + \ldots \\ &= \sum_{k = 4}^{\infty}\frac{6}{3^k} = \frac{\text{first term}}{1 - \text{base}} = \frac{\frac{6}{3^4}}{1 - \frac{1}{3}} \\ &= \boxed{\frac{1}{9}} = \boxed{0.111\overline1} \end{aligned} \]
Or alternatively,
\[\begin{aligned} P(\text{outcome is greater than 3}) &= 1 - P(2) - P(3) \\ &= 1 - \frac{6}{3^2} - \frac{6}{3^3} \\ &= \boxed{\frac{1}{9}} = \boxed{0.111\overline1} \end{aligned} \]
Suppose \(P(A) = 0.4\), \(P(B^\prime) = 0.3\), and \(P(A \cap B^\prime) = 0.1\).
\(B\) | \(B^\prime\) | ||
---|---|---|---|
\(A\) | 0.30 | 0.10 | 0.40 |
\(A^\prime\) | 0.40 | 0.20 | 0.60 |
0.70 | 0.30 | 1.00 |
(a) Find \(P(A \cup B)\).
Solution:
\[ P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.40 + 0.70 - 0.30 = \boxed{0.80} \]
\[ P(A \cup B) = 1 - P(A^\prime \cap B^\prime) = 1 - 0.20 = \boxed{0.80} \]
\[ P(A \cup B) = P(A \cap B) + P(A \cap B^\prime) + P(A^\prime \cap B) = 0.30 + 0.10 + 0.40 = \boxed{0.80} \]
(b) Find \(P(B^\prime \mid A)\).
Solution:
\[ P(B^\prime \mid A) = \frac{P(A \cap B^\prime)}{P(A)} = \frac{0.10}{0.40} = \boxed{\frac{1}{4}} = \boxed{0.25} \]
(c) Find \(P(B \mid A^\prime)\).
Solution:
\[ P(B \mid A^\prime) = \frac{P(A^\prime \cap B)}{P(A^\prime)} = \frac{0.40}{0.60} = \boxed{\frac{2}{3}} = \boxed{0.66\overline6} \]
Suppose:
(a) Find \(P((A \cup B) \cap C^\prime)\).
Solution:
After finding the probabilities for each disjoint region and shading the appropriate venn diagram, we have
\[ P((A \cup B) \cap C^\prime) = \boxed{0.50} \]
(b) Find \(P(A \cup (B \cap C))\).
Solution:
After finding the probabilities for each disjoint region and shading the appropriate venn diagram, we have
\[ P(A \cup (B \cap C)) = \boxed{0.70} \]