STAT 432: Basics of Statistical Learning

Quiz II - Review Questions

Exercise 1

Two models were fit using **ridge** regression. One with $\lambda = 0.1$ and the other with $\lambda = 0.002$. Which was fit using $\lambda = 0.1$?

3 6 1 1	
Model	Δ·
mouci	л.

## ##	(Intercept) -0.7618	x1 0.3647	x2 0.1893	x3 1.0853	x4 0.7744	x5 1.3136
Mo	del B :					
##	(Intercept)	x1	x2	x3	x4	x5
##	-0.5782	0.3322	0.1869	0.9741	0.6806	1.1916

Exercise 2

Two models were fit using the **lasso**. One with $\lambda = 0.1$ and the other with $\lambda = 0.002$. Which was fit using $\lambda = 0.1$?

Model \mathbf{A} :

## ##	(Intercept) 0.2709	x1 0.0000	x2 0.0000	x3 0.5547	x4 0.2724	x5 0.8676
Mo	del \mathbf{B} :					
##	(Intercept)	x1	x2	хЗ	x4	x5
##	-0.7445	0.3581	0.1838	1.0772	0.7665	1.3075

Exercise 3

Two models were selected, one using backwards AIC and the other using backwards BIC. Which was found using backwards BIC?

Model \mathbf{A} :

## ##	(Intercept) 0.5515	x5 1.1272		
Mo	del \mathbf{B} :			
##	(Intercept)	хЗ	x4	x5
##	-0.4745	1.0845	0.7446	1.3418

Suppose we estimate the regression coefficients in a linear regression model by minimizing

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \text{ subject to } \sum_{j=1}^{p} \beta_j^2 \le s.$$

for a particular value of s. Draw a plot that indicates how train and test RMSE are affected by the choice of s. Assume that simply minimizing RSS would result in a model that overfits. Also assume that a model with only the intercept would underfit.

Exercise 5

Continue with the setup from Exercise 4. Consider using this model to make a prediction. What happens to **variance** as s is increased from 0?

Exercise 6

Continue with the setup from Exercise 4. Consider using this model to make a prediction. What happens to squared bias as s is increased from 0?

A tree model was fit to training data for a classification problem. Below is a sample of the data used, where **survived** is the response. We are attempting to predict the survival status of passengers of the Titanic:

pclass	survived	sex	age	sibsp	parch
1st	survived	female	29.0000	0	0
1st	survived	male	0.9167	1	2
1st	died	female	2.0000	1	2
1st	died	male	30.0000	1	2
1st	died	female	25.0000	1	2

Predict the outcome of survived for the following three test passengers:

pclass	sex	age	sibsp	parch
1st	male	71	0	0
1st	female	48	1	0
2nd	male	3	1	1

A bagged tree model (using a total of 3 trees) was fit to training data for a classification problem. Below is a sample of the data used, where **survived** is the response. We are attempting to predict the survival status of passengers of the Titanic:

pclass	survived	sex	age	sibsp	parch
1st	survived	female	29.0000	0	0
1 st	survived	male	0.9167	1	2
1 st	died	female	2.0000	1	2
1 st	died	male	30.0000	1	2
1st	died	female	25.0000	1	2

Predict the outcome of survived, and predicted probability of surviving for the following test passengers:

pclass	sex	age	sibsp	parch
1st	male	71	0	0
1st	female	48	1	0

Consider fitting classification methods to the data in the plot below. For each part below, specify which of the two methods will perform better.

- X1
- (a) Additive Logistic Regression or k-Nearest Neighbors?
- (b) Additive Logistic Regression or a single Decision Tree?
- (c) Additive Logistic Regression or a Random Forest?
- (d) A single decision tree or a Random Forest?

Solutions

- 1. B
- 2. A
- 3. A
- 4. Test: U-shaped. Train: Decrease as s increases.
- 5. Increase.
- 6. Decrease.
- 7. Died. Survived. Survived.
- 8. Died. (0.18) Survived. (0.8733)
- 9. KNN. Tree. RF. RF.