ConformalPredictor
conformal.ConformalPredictor(self, regressor, alpha=0.05)
A class used to represent a (Split) Conformal Predictor.
\[ \hat{C}_{\alpha}(x) = [\hat{u}(x) \pm q_{1 - \alpha}(\mathcal{S})] \]
Parameters
Name | Type | Description | Default |
---|---|---|---|
regressor |
object |
A regressor object that has a ‘predict’ method. | required |
alpha |
float |
The significance level used in the prediction interval calculation. | 0.05 |
Attributes
Name | Type | Description |
---|---|---|
scores | ndarray |
The conformity scores of the calibration data. |
quantile | float |
The \((1 - \alpha)\) empirical quantile of the conformity scores. |
Methods
Name | Description |
---|---|
fit | Calibrates the conformal predictor using the provided calibration set. |
predict | Predicts the output for the given input X and provides a prediction interval. |
fit
conformal.ConformalPredictor.fit(X, y)
Calibrates the conformal predictor using the provided calibration set.
Specifically, the fit
method learns
\[ q_{1 - \alpha}(S) \]
where \(q_{1 - \alpha}(S)\) is the \((1 - \alpha)\) empirical quantile of the conformity scores
\[ \mathcal{S} = \{|y_i - \hat{u}(x_i)|\} \cup \{ \infty \} \]
Parameters
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray |
The input data for calibration. | required |
y |
ndarray |
The output data for calibration. | required |
predict
conformal.ConformalPredictor.predict(X)
Predicts the output for the given input X
and provides a prediction interval.
\[ \hat{C}_{\alpha}(x) = [\hat{u}(x) \pm q_{1 - \alpha}(\mathcal{S})] \]
Parameters
Name | Type | Description | Default |
---|---|---|---|
X |
ndarray |
The input data for which to predict the output. | required |
Returns
Type | Description |
---|---|
tuple |
A tuple containing the prediction (1D ndarray ) and the lower (1D ndarray ) and upper bounds (1D ndarray ) of the prediction interval. |